A KAM Theorem for Two Dimensional Completely Resonant Reversible Schrodinger Systems

被引:5
作者
Geng, Jiansheng [1 ]
Lou, Zhaowei [2 ]
Sun, Yingnan [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
KAM; NLS; Quasi-periodic solution; Reversible vector field; Birkhoff normal form;
D O I
10.1007/s10884-021-09941-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove an abstract KAM (Kolmogorov-Arnold-Moser) theorem for infinite dimensional reversible Schrodinger systems. Using this KAM theorem together with partial Birkhoff normal form method, we obtain the existence of quasi-periodic solutions for a class of completely resonant reversible coupled nonlinear Schrodinger systems on two dimensional torus.
引用
收藏
页码:1611 / 1641
页数:31
相关论文
共 27 条
[1]   An Abstract Nash-Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds [J].
Berti, Massimiliano ;
Corsi, Livia ;
Procesi, Michela .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (03) :1413-1454
[2]   Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential [J].
Berti, Massimiliano ;
Bolle, Philippe .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :229-286
[3]   Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential [J].
Berti, Massimiliano ;
Bolle, Philippe .
NONLINEARITY, 2012, 25 (09) :2579-2613
[4]  
Bourgain J, 2008, J EUR MATH SOC, V10, P1
[5]   Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations [J].
Bourgain, J .
ANNALS OF MATHEMATICS, 1998, 148 (02) :363-439
[6]  
Bourgain J., 2005, ANN MATH STUD, V158
[7]  
Bourgain J., 1994, Int. Math. Res. Not, V1994, P475, DOI [DOI 10.1155/S1073792894000516, 10.1155/S1073792894000516]
[8]   KAM tori for 1D nonlinear wave equations with periodic boundary conditions [J].
Chierchia, L ;
You, JG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (02) :497-525
[9]   KAM for the nonlinear beam equation [J].
Eliasson, L. Hakan ;
Grebert, Benoit ;
Kuksin, Sergei B. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (06) :1588-1715
[10]   KAM for the nonlinear Schrodinger equation [J].
Eliasson, L. Hakan ;
Kuksin, Sergei B. .
ANNALS OF MATHEMATICS, 2010, 172 (01) :371-435