Some martingale properties of the simple random walk and its maximum process

被引:0
|
作者
Fujita, Takahiko [1 ]
Yagishita, Shotaro [2 ]
Yoshida, Naohiro [3 ]
机构
[1] Chuo Univ, Dept Data Sci Business Innovat, 1-13-27 Kasuga,Bunkyo Ku, Tokyo 1128551, Japan
[2] Chuo Univ, Dept Ind & Syst Engn, 1-13-27 Kasuga,Bunkyo Ku, Tokyo 1128551, Japan
[3] Keiai Univ, Dept Econ, 1-5-21 Anagawa,Inage ku, Chiba, Chiba 2638588, Japan
关键词
Simple random walk; Martingale; Kennedy martingale; Discrete Azema-Yor martingale; Discrete Skorokhod embedding;
D O I
10.1016/j.spl.2024.110076
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Martingales related to simple random walks and their maximum processes are investigated, and characterizations of those martingales are obtained. As applications, derivation of the Kennedy martingale, proofs of the corresponding Doob inequalities, and a solution to the Skorokhod embedding problem are presented.
引用
收藏
页数:8
相关论文
共 32 条
  • [1] Martingale defocusing and transience of a self-interacting random walk
    Peres, Yuval
    Schapira, Bruno
    Sousi, Perla
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (03): : 1009 - 1022
  • [2] Rearrangements of the Simple Random Walk
    Skyers, Marina
    Stanley, Lee J.
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2020, 2022, 388 : 293 - 304
  • [3] Exit and Return of a Simple Random Walk
    M. van den Berg
    Potential Analysis, 2005, 23 : 45 - 53
  • [4] On time dependency in a simple random walk
    Kabanovich, VI
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1996, 40 (01) : 156 - 158
  • [5] The disconnection exponent for simple random walk
    Gregory F. Lawler
    Emily E. Puckette
    Israel Journal of Mathematics, 1997, 99 : 109 - 121
  • [6] Exit and return of a simple random walk
    Van den Berg, M
    POTENTIAL ANALYSIS, 2005, 23 (01) : 45 - 53
  • [7] Some properties on G-evaluation and its applications to G-martingale decomposition
    YongSheng Song
    Science China Mathematics, 2011, 54 : 287 - 300
  • [8] Return probabilities of a simple random walk on percolation clusters
    Heicklen, D
    Hoffman, C
    ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 : 250 - 302
  • [9] Genealogy of the extremal process of the branching random walk
    Mallein, Bastien
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 1065 - 1087
  • [10] PLUMES IN KINETIC TRANSPORT: HOW THE SIMPLE RANDOM WALK CAN BE TOO SIMPLE
    Dekking, Michel
    Kong, Derong
    Van Opbroek, Annegreet
    STOCHASTIC MODELS, 2012, 28 (04) : 635 - 648