GLOBAL SOLUTIONS AND PATTERN FORMATIONS FOR A DIFFUSIVE PREY-PREDATOR SYSTEM WITH HUNTING COOPERATION AND PREY-TAXIS

被引:1
作者
Zhang, Huisen [1 ]
Fu, Shengmao [1 ,2 ]
Huang, Canyun [3 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[2] Kashi Univ, Sch Math & Stat, Kashi 844006, Peoples R China
[3] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 09期
关键词
Hunting cooperation; prey-taxis; uniform boundedness; taxis-driven instability; pattern formation; PACK SIZE; MODEL; BIFURCATION; BOUNDEDNESS; STABILITY; BEHAVIOR;
D O I
10.3934/dcdsb.2024017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, a diffusive prey-predator model with hunting cooperation and prey-taxis is proposed and investigated. First, we prove the uniform boundedness and global existence of time-varying solutions to the model. Then the stability and prey-taxis-driven instability of positive equilibrium are discussed through linearization analysis. It is found that negative prey-taxis may change the spatial stability of the positive equilibrium, implying formation of Turing pattern. Next, we discuss the existence and stability of the spatial pattern by choose the prey-tactic sensitivity coefficient as bifurcation parameter. Finally, some numerical simulations are performed to visualize the impact of prey-taxis on the complex spatial pattern formation.
引用
收藏
页码:3621 / 3644
页数:24
相关论文
共 37 条
  • [1] A reaction-diffusion system modeling predator-prey with prey-taxis
    Ainseba, Bedr'Eddine
    Bendahmane, Mostafa
    Noussair, Ahmed
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) : 2086 - 2105
  • [2] Alikakos N.D., 1979, Comm. Partial Differential Equations, V4, P827, DOI [DOI 10.1080/03605307908820113, 10.1080/03605307908820113]
  • [3] Hunting cooperation and Allee effects in predators
    Alves, Mickael Teixeira
    Hilker, Frank M.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2017, 419 : 13 - 22
  • [4] Amann H., 1990, Differ. Integral Equ, V3, P13
  • [5] Amann H., 1993, Function Spaces, Differential Operators and Nonlinear Analysis, Friedrichroda, V133, P9, DOI DOI 10.1007/978-3-663-11336-2
  • [6] Disease in group-defending prey can benefit predators
    Bate, Andrew M.
    Hilker, Frank M.
    [J]. THEORETICAL ECOLOGY, 2014, 7 (01) : 87 - 100
  • [7] Impacts of Foraging Facilitation Among Predators on Predator-prey Dynamics
    Berec, Ludek
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2010, 72 (01) : 94 - 121
  • [8] Crandall MG., 1971, J FUNCT ANAL, V8, P321
  • [9] COMMUNAL HUNTING AND PACK SIZE IN AFRICAN WILD DOGS, LYCAON-PICTUS
    CREEL, S
    CREEL, NM
    [J]. ANIMAL BEHAVIOUR, 1995, 50 : 1325 - 1339
  • [10] Bifurcation Analysis and Spatio-Temporal Patterns of a Prey-Predator Model with Hunting Cooperation
    Dey, Subrata
    Banerjee, Malay
    Ghorai, S.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (11):