Toward the Development of User-Centered Neurointegrated Lower Limb Prostheses

被引:11
作者
Barberi, F. [1 ]
Anselmino, E. [1 ]
Mazzoni, A. [1 ]
Goldfarb, M. [2 ]
Micera, S. [3 ]
机构
[1] BioRobot Inst, Scuola Super St Anna, Dept Excellence Robot & AI, I-56025 Pisa, Italy
[2] Vanderbilt Sch Engn, Nashville, TN 37235 USA
[3] Ecole Polytech Fed Lausanne EPFL, Bertarelli Fdn Chair Translat Neuroengn, Neuro X Inst, Sch Engn, Campus Biotech,Ch Mines 9, CH-1202 Geneva, Switzerland
关键词
Prosthesis; lower-limb; user's needs; comorbidities; ANKLE-FOOT PROSTHESIS; UNIFIED CONTROLLER; SENSORY FEEDBACK; POWERED KNEE; WALKING; LEG; AMPUTATION; DESIGN; LEVEL; SYSTEM;
D O I
10.1109/RBME.2023.3309328
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The last few years witnessed radical improvements in lower-limb prostheses. Researchers have presented innovative solutions to overcome the limits of the first generation of prostheses, refining specific aspects which could be implemented in future prostheses designs. Each aspect of lower-limb prostheses has been upgraded, but despite these advances, a number of deficiencies remain and the most capable limb prostheses fall far short of the capabilities of the healthy limb. This article describes the current state of prosthesis technology; identifies a number of deficiencies across the spectrum of lower limb prosthetic components with respect to users' needs; and discusses research opportunities in design and control that would substantially improve functionality concerning each deficiency. In doing so, the authors present a roadmap of patients related issues that should be addressed in order to fulfill the vision of a next-generation, neurally-integrated, highly-functional lower limb prosthesis.
引用
收藏
页码:212 / 228
页数:17
相关论文
共 159 条
[1]   Stair ascent kinematics and kinetics with a powered lower leg system following transtibial amputation [J].
Aldridge, Jennifer M. ;
Sturdy, Jordan T. ;
Wilken, Jason M. .
GAIT & POSTURE, 2012, 36 (02) :291-295
[2]   Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits [J].
Au, Samuel ;
Berniker, Max ;
Herr, Hugh .
NEURAL NETWORKS, 2008, 21 (04) :654-666
[3]   Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy [J].
Au, Samuel K. ;
Weber, Jeff ;
Herr, Hugh .
IEEE TRANSACTIONS ON ROBOTICS, 2009, 25 (01) :51-66
[4]  
Au SK, 2005, INT C REHAB ROBOT, P375
[5]  
Azocar AF, 2018, P IEEE RAS-EMBS INT, P111, DOI 10.1109/BIOROB.2018.8488057
[6]   Prosthesis satisfaction in lower limb amputees A systematic review of associated factors and questionnaires [J].
Baars, Erwin C. ;
Schrier, Ernst ;
Dijkstra, Pieter U. ;
Geertzen, Jan H. B. .
MEDICINE, 2018, 97 (39)
[7]   Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles [J].
Badia, Jordi ;
Boretius, Tim ;
Andreu, David ;
Azevedo-Coste, Christine ;
Stieglitz, Thomas ;
Navarro, Xavier .
JOURNAL OF NEURAL ENGINEERING, 2011, 8 (03)
[8]   Early decoding of walking tasks with minimal set of EMG channels [J].
Barberi, Federica ;
Iberite, Francesco ;
Anselmino, Eugenio ;
Randi, Pericle ;
Sacchetti, Rinaldo ;
Gruppioni, Emanuele ;
Mazzoni, Alberto ;
Micera, Silvestro .
JOURNAL OF NEURAL ENGINEERING, 2023, 20 (02)
[9]   A Semi-Powered Ankle Prosthesis and Unified Controller for Level and Sloped Walking [J].
Bartlett, Harrison L. ;
King, Shane T. ;
Goldfarb, Michael ;
Lawson, Brian E. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 :320-329
[10]   Design, Control, and Preliminary Assessment of a Multifunctional Semipowered Ankle Prosthesis [J].
Bartlett, Harrison L. ;
Lawson, Brian E. ;
Goldfarb, Michael .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2019, 24 (04) :1532-1540