Sensitivity of extreme precipitation to climate change inferred using artificial intelligence shows high spatial variability

被引:14
作者
Bird, Leroy J. [1 ]
Bodeker, Gregory E. [1 ,2 ]
Clem, Kyle R. [2 ]
机构
[1] Bodeker Sci, 42 Russell St, Alexandra 9320, New Zealand
[2] Victoria Univ Wellington, Sch Geog Environm & Earth Sci, Te Kura Tatai Aro Whenua, Te Herenga Waka, Wellington 6012, New Zealand
来源
COMMUNICATIONS EARTH & ENVIRONMENT | 2023年 / 4卷 / 01期
关键词
INTERNAL VARIABILITY; BIAS CORRECTION; FUTURE CHANGES; TEMPERATURE; ATTRIBUTION; TRENDS; INTENSIFICATION; UNCERTAINTY; NETWORKS; RAINFALL;
D O I
10.1038/s43247-023-01142-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Evaluating how extreme precipitation changes with climate is challenged by the paucity, brevity and inhomogeneity of observational records. Even when aggregating precipitation observations over large regions (obscuring potentially important spatial heterogeneity) the statistics describing extreme precipitation are often too uncertain to be of any practical value. Here we present an approach where a convolutional neural network (an artificial intelligence model) is trained on precipitation measurements from 10,000 stations to learn the spatial structure of the parameters of a generalised extreme value model, and the sensitivity of those parameters to the annual mean, global mean, surface temperature. The method is robust against the limitations of the observational record and avoids the short-comings of regional and global climate models in simulating the sensitivity of extreme precipitation to climate change. The maps of the sensitivity of extreme precipitation to climate change, on similar to 1.5 km x 1.5 km grids over North America, Europe, Australia and New Zealand, derived using the successfully trained convolutional neural network, show high spatial variability.
引用
收藏
页数:14
相关论文
共 69 条
[21]  
Huang W.K., 2016, ADV STAT CLIM METEOR, V2, P79, DOI [DOI 10.5194/ASCMO-2-79-2016, 10.5194/ascmo-2-79-2016]
[22]   Human influence has intensified extreme precipitation in North America [J].
Kirchmeier-Young, Megan C. ;
Zhang, Xuebin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (24) :13308-13313
[23]   Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world [J].
Krishnan, R. ;
Sabin, T. P. ;
Vellore, R. ;
Mujumdar, M. ;
Sanjay, J. ;
Goswami, B. N. ;
Hourdin, F. ;
Dufresne, J. -L. ;
Terray, P. .
CLIMATE DYNAMICS, 2016, 47 (3-4) :1007-1027
[24]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[25]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[26]   Joint bias correction of temperature and precipitation in climate model simulations [J].
Li, Chao ;
Sinha, Eva ;
Horton, Daniel E. ;
Diffenbaugh, Noah S. ;
Michalak, Anna M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (23) :13153-13162
[27]  
Liu LY, 2021, Arxiv, DOI arXiv:1908.03265
[28]   Impacts of a warming marginal sea on torrential rainfall organized under the Asian summer monsoon [J].
Manda, Atsuyoshi ;
Nakamura, Hisashi ;
Asano, Naruhiko ;
Iizuka, Satoshi ;
Miyama, Toru ;
Moteki, Qoosaku ;
Yoshioka, Mayumi K. ;
Nishii, Kazuaki ;
Miyasaka, Takafumi .
SCIENTIFIC REPORTS, 2014, 4
[29]   On forced temperature changes, internal variability, and the AMO [J].
Mann, Michael E. ;
Steinman, Byron A. ;
Miller, Sonya K. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (09) :3211-3219
[30]   Forcing, feedback and internal variability in global temperature trends [J].
Marotzke, Jochem ;
Forster, Piers M. .
NATURE, 2015, 517 (7536) :565-U291