Sensitivity of extreme precipitation to climate change inferred using artificial intelligence shows high spatial variability

被引:14
作者
Bird, Leroy J. [1 ]
Bodeker, Gregory E. [1 ,2 ]
Clem, Kyle R. [2 ]
机构
[1] Bodeker Sci, 42 Russell St, Alexandra 9320, New Zealand
[2] Victoria Univ Wellington, Sch Geog Environm & Earth Sci, Te Kura Tatai Aro Whenua, Te Herenga Waka, Wellington 6012, New Zealand
来源
COMMUNICATIONS EARTH & ENVIRONMENT | 2023年 / 4卷 / 01期
关键词
INTERNAL VARIABILITY; BIAS CORRECTION; FUTURE CHANGES; TEMPERATURE; ATTRIBUTION; TRENDS; INTENSIFICATION; UNCERTAINTY; NETWORKS; RAINFALL;
D O I
10.1038/s43247-023-01142-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Evaluating how extreme precipitation changes with climate is challenged by the paucity, brevity and inhomogeneity of observational records. Even when aggregating precipitation observations over large regions (obscuring potentially important spatial heterogeneity) the statistics describing extreme precipitation are often too uncertain to be of any practical value. Here we present an approach where a convolutional neural network (an artificial intelligence model) is trained on precipitation measurements from 10,000 stations to learn the spatial structure of the parameters of a generalised extreme value model, and the sensitivity of those parameters to the annual mean, global mean, surface temperature. The method is robust against the limitations of the observational record and avoids the short-comings of regional and global climate models in simulating the sensitivity of extreme precipitation to climate change. The maps of the sensitivity of extreme precipitation to climate change, on similar to 1.5 km x 1.5 km grids over North America, Europe, Australia and New Zealand, derived using the successfully trained convolutional neural network, show high spatial variability.
引用
收藏
页数:14
相关论文
共 69 条
[1]  
Alex Krizhevsky I.S., 2012, Adv. Neural Inf. Process. Syst., V51, P854
[2]  
[Anonymous], 2023, New Zealand National Climate Database (CLIDB)
[3]  
Bird L., 2023, Zenodo, DOI [10.5281/zenodo.10038809, DOI 10.5281/ZENODO.10038809]
[4]  
Bird Leroy, 2023, Zenodo, DOI 10.5281/ZENODO.6917840
[5]  
Coles S., 2001, An Introduction to Statistical Modeling of Extreme Values, DOI DOI 10.1007/978-1-4471-3675-0
[6]  
Cuomo S., 2022, arXiv
[7]   Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels Latitude [J].
Delworth, Thomas L. ;
Zeng, Fanrong .
NATURE GEOSCIENCE, 2014, 7 (08) :583-587
[8]   Investigating observed northwest Australian rainfall trends in Coupled Model Intercomparison Project phase 5 detection and attribution experiments [J].
Dey, Raktima ;
Lewis, Sophie C. ;
Abram, Nerilie J. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019, 39 (01) :112-127
[9]   Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset [J].
Donat, M. G. ;
Alexander, L. V. ;
Yang, H. ;
Durre, I. ;
Vose, R. ;
Dunn, R. J. H. ;
Willett, K. M. ;
Aguilar, E. ;
Brunet, M. ;
Caesar, J. ;
Hewitson, B. ;
Jack, C. ;
Tank, A. M. G. Klein ;
Kruger, A. C. ;
Marengo, J. ;
Peterson, T. C. ;
Renom, M. ;
Oria Rojas, C. ;
Rusticucci, M. ;
Salinger, J. ;
Elrayah, A. S. ;
Sekele, S. S. ;
Srivastava, A. K. ;
Trewin, B. ;
Villarroel, C. ;
Vincent, L. A. ;
Zhai, P. ;
Zhang, X. ;
Kitching, S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (05) :2098-2118
[10]  
Easterling D. R., 2017, Climate Science Special Report: Fourth National Climate Assessment, P207, DOI [DOI 10.7930/J0H993CC, 10.7930/J0H993CC, 10.7930/j0h993cc]