Riemannian Low-Rank Model Compression for Federated Learning With Over-the-Air Aggregation

被引:4
|
作者
Xue, Ye [1 ]
Lau, Vincent [2 ]
机构
[1] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
关键词
Federated learning; model compression; Riemannian optimization; IoT; OPTIMIZATION; CONVERGENCE; RETRACTIONS; ALGORITHMS;
D O I
10.1109/TSP.2023.3284381
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-rank model compression is a widely used technique for reducing the computational load when training machine learning models. However, existing methods often rely on relaxing the low-rank constraint of the model weights using a regularized nuclear norm penalty, which requires an appropriate hyperparameter that can be difficult to determine in practice. Furthermore, existing compression techniques are not directly applicable to efficient over-the-air (OTA) aggregation in federated learning (FL) systems for distributed Internet-of-Things (IoT) scenarios. In this article, we propose a novel manifold optimization formulation for low-rank model compression in FL that does not relax the low-rank constraint. Our optimization is conducted directly over the low-rank manifold, guaranteeing that the model is exactly low-rank. We also introduce a consensus penalty in the optimization formulation to support OTA aggregation. Based on our optimization formulation, we propose an alternating Riemannian optimization algorithm with a precoder that enables efficient OTA aggregation of low-rank local models without sacrificing training performance. Additionally, we provide convergence analysis in terms of key system parameters and conduct extensive experiments with real-world datasets to demonstrate the effectiveness of our proposed Riemannian low-rank model compression scheme compared to various state-of-the-art baselines.
引用
收藏
页码:2172 / 2187
页数:16
相关论文
共 50 条
  • [41] Cloud-RAN Over-the-Air Federated Learning
    Ma, Haoming
    Yuan, Xiaojun
    Ding, Zhi
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 4257 - 4262
  • [42] Over-the-Air Federated Learning with Energy Harvesting Devices
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1942 - 1947
  • [43] Digital Over-the-Air Federated Learning in Multi-Antenna Systems
    Wang, Sihua
    Chen, Mingzhe
    Shen, Cong
    Yin, Changchuan
    Brinton, Christopher G.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 15125 - 15141
  • [44] Interference Management for Over-the-Air Federated Learning in Multi-Cell Wireless Networks
    Wang, Zhibin
    Zhou, Yong
    Shi, Yuanming
    Zhuang, Weihua
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (08) : 2361 - 2377
  • [45] Device Scheduling in Over-the-Air Federated Learning Via Matching Pursuit
    Bereyhi, Ali
    Vagollari, Adela
    Asaad, Saba
    Muller, Ralf R.
    Gerstacker, Wolfgang
    Poor, H. Vincent
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2188 - 2203
  • [46] Optimized Power Control Design for Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Zhu, Guangxu
    Xu, Jie
    Wang, Zhiqin
    Cui, Shuguang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) : 342 - 358
  • [47] Base Station Dataset-Assisted Broadband Over-the-Air Aggregation for Communication-Efficient Federated Learning
    Hong, Jun-Pyo
    Park, Sangjun
    Choi, Wan
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 7259 - 7272
  • [48] Joint Client Selection and Receive Beamforming for Over-the-Air Federated Learning With Energy Harvesting
    Chen, Caijuan
    Chiang, Yi-Han
    Lin, Hai
    Lui, John C. S.
    Ji, Yusheng
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2023, 4 : 1127 - 1140
  • [49] Dynamic Scheduling for Over-the-Air Federated Edge Learning With Energy Constraints
    Sun, Yuxuan
    Zhou, Sheng
    Niu, Zhisheng
    Gunduz, Deniz
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) : 227 - 242
  • [50] Spectrum Breathing: Protecting Over-the-Air Federated Learning Against Interference
    Wang, Zhanwei
    Huang, Kaibin
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 10058 - 10071