Riemannian Low-Rank Model Compression for Federated Learning With Over-the-Air Aggregation

被引:4
|
作者
Xue, Ye [1 ]
Lau, Vincent [2 ]
机构
[1] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
关键词
Federated learning; model compression; Riemannian optimization; IoT; OPTIMIZATION; CONVERGENCE; RETRACTIONS; ALGORITHMS;
D O I
10.1109/TSP.2023.3284381
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-rank model compression is a widely used technique for reducing the computational load when training machine learning models. However, existing methods often rely on relaxing the low-rank constraint of the model weights using a regularized nuclear norm penalty, which requires an appropriate hyperparameter that can be difficult to determine in practice. Furthermore, existing compression techniques are not directly applicable to efficient over-the-air (OTA) aggregation in federated learning (FL) systems for distributed Internet-of-Things (IoT) scenarios. In this article, we propose a novel manifold optimization formulation for low-rank model compression in FL that does not relax the low-rank constraint. Our optimization is conducted directly over the low-rank manifold, guaranteeing that the model is exactly low-rank. We also introduce a consensus penalty in the optimization formulation to support OTA aggregation. Based on our optimization formulation, we propose an alternating Riemannian optimization algorithm with a precoder that enables efficient OTA aggregation of low-rank local models without sacrificing training performance. Additionally, we provide convergence analysis in terms of key system parameters and conduct extensive experiments with real-world datasets to demonstrate the effectiveness of our proposed Riemannian low-rank model compression scheme compared to various state-of-the-art baselines.
引用
收藏
页码:2172 / 2187
页数:16
相关论文
共 50 条
  • [1] Over-the-Air Federated Learning and Optimization
    Zhu, Jingyang
    Shi, Yuanming
    Zhou, Yong
    Jiang, Chunxiao
    Chen, Wei
    Letaief, Khaled B.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 16996 - 17020
  • [2] Over-the-Air Federated Learning via Weighted Aggregation
    Azimi-Abarghouyi, Seyed Mohammad
    Tassiulas, Leandros
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 18240 - 18253
  • [3] Coded Over-the-Air Computation for Model Aggregation in Federated Learning
    Zhang, Naifu
    Tao, Meixia
    Wang, Jia
    Shao, Shuo
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (01) : 160 - 164
  • [4] Federated Learning With Over-the-Air Aggregation Over Time-Varying Channels
    Tegin, Busra
    Duman, Tolga M.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (08) : 5671 - 5684
  • [5] FLoCoRA: FEDERATED LEARNING COMPRESSION WITH LOW-RANK ADAPTATION
    Grativol, Lucas
    Leonardon, Mathieu
    Muller, Guillaume
    Fresse, Virginie
    Arzel, Matthieu
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1786 - 1790
  • [6] Over-the-Air Federated Graph Learning
    Wang, Zixin
    Zhou, Yong
    Shi, Yuanming
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 18669 - 18683
  • [7] Federated Learning Over-the-Air by Retransmissions
    Hellstrom, Henrik
    Fodor, Viktoria
    Fischione, Carlo
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9143 - 9156
  • [8] Deep Compression for Efficient and Accelerated Over-the-Air Federated Learning
    Khan, Fazal Muhammad Ali
    Abou-Zeid, Hatem
    Hassan, Syed Ali
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 25802 - 25817
  • [9] Device Scheduling for Relay-Assisted Over-the-Air Aggregation in Federated Learning
    Zhang, Fan
    Chen, Jining
    Wang, Kunlun
    Chen, Wen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 7412 - 7417
  • [10] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,