Low-Temperature Oxidation Reaction Processes of Cyclopentanone Unraveled by In Situ Mass Spectrometry and Theoretical Study

被引:2
|
作者
Jiang, Yihuang [1 ]
Shi, Zaifa [1 ,3 ]
Yu, Jingxiong [2 ]
Wu, Di [1 ]
Chen, Jun [4 ,5 ,6 ]
Tang, Zichao [1 ]
Zheng, Lansun [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, Key Lab Interfacial Phys & Technol, Shanghai 201800, Peoples R China
[3] Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361005, Fujian, Peoples R China
[4] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[5] Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350002, Peoples R China
[6] Xiamen Univ, Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Peoples R China
来源
ACS OMEGA | 2023年 / 8卷 / 24期
基金
中国国家自然科学基金;
关键词
MASTER EQUATION; UNIMOLECULAR DECOMPOSITION; MULTIPARAMETER CORRELATION; COMBUSTION CHEMISTRY; BIODIESEL PRODUCTION; PATHWAYS; FUELS;
D O I
10.1021/acsomega.3c02162
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although cyclopentanone (CPO) is a promising bio-derivedfuel,thermodynamic data of its low-temperature oxidation under high-pressureconditions are lacking. In this work, the low-temperature oxidationmechanism of CPO is investigated in a flow reactor in the temperaturerange of 500-800 K and at a total pressure of 3 atm by a molecularbeam sampling vacuum ultraviolet photoionization time-of-flight massspectrometer. The electronic structure and pressure-dependent kineticcalculations are carried out at the UCCSD(T)-F12a/aug-cc-pVDZ//B3LYP/6-31+G(d,p)level to explore the combustion mechanism of CPO. Experimental andtheoretical observations showed that the dominant product channelin the reaction of CPO radicals with O-2 is HO2 elimination, yielding 2-cyclopentenone. The hydroperoxyalkyl radical((center dot)QOOH) generated by 1,5-H-shifting is easily reactedwith second O-2 and forms ketohydroperoxide (KHP) intermediates.Unfortunately, the third O-2 addition products are not detected.In addition, the decomposition pathways of KHP during the low-temperatureoxidation of CPO are further assessed, and the unimolecular dissociationpathways of CPO radicals are confirmed. The results of this studycan be used for future research on the kinetic combustion mechanismsof CPO under high pressure.
引用
收藏
页码:22077 / 22087
页数:11
相关论文
共 50 条
  • [31] Effect of stannous chloride on low-temperature oxidation reaction of coal
    Qin, Botao
    Dou, Guolan
    Zhong, Xiaoxing
    FUEL PROCESSING TECHNOLOGY, 2018, 176 : 59 - 63
  • [32] New Insights into Low-Temperature Oxidation of Propane from Synchrotron Photoionization Mass Spectrometry and Multiscale Informatics Modeling
    Welz, Oliver
    Burke, Michael P.
    Antonov, Ivan O.
    Goldsmith, C. Franklin
    Savee, John D.
    Osborn, David L.
    Taatjes, Craig A.
    Klippenstein, Stephen J.
    Sheps, Leonid
    JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (28): : 7116 - 7129
  • [33] Experimental and theoretical (ReaxFF) study of manganese-based catalysts for low-temperature toluene oxidation
    Duplancic, Marina
    Gomzi, Vjeran
    Pintar, Albin
    Kurajica, Stanislav
    Tomasic, Vesna
    CERAMICS INTERNATIONAL, 2021, 47 (03) : 3108 - 3121
  • [34] MEASUREMENT OF THE ACTIVATION-ENERGY OF THE LOW-TEMPERATURE OXIDATION OF COAL USING SECONDARY ION MASS-SPECTROMETRY
    MARTIN, RR
    MACPHEE, JA
    WORKINTON, M
    LINDSAY, E
    FUEL, 1989, 68 (08) : 1077 - 1079
  • [35] In Situ Minerals Transformation Study of Low-Temperature Ash
    Xuan, Weiwei
    Xia, Dehong
    ENERGY & FUELS, 2018, 32 (01) : 336 - 341
  • [36] In Situ Combustion of Heavy, Medium, and Light Crude Oils: Low-Temperature Oxidation in Terms of a Chain Reaction Approach
    Ushakova, Alexandra S.
    Zatsepin, Vladislav
    Khelkhal, Mohammed A.
    Sitnov, Sergey A.
    Vakhin, Alexey V.
    ENERGY & FUELS, 2022, 36 (14) : 7710 - 7721
  • [37] Arrays of low-temperature plasma probes for ambient ionization mass spectrometry
    Dalgleish, Jon K.
    Wleklinski, Michael
    Shelley, Jacob T.
    Mulligan, Christopher C.
    Ouyang, Zheng
    Cooks, R. Graham
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2013, 27 (01) : 135 - 142
  • [38] First application of calorimetric low-temperature detectors in accelerator mass spectrometry
    Kraft, S
    Andrianov, V
    Bleile, A
    Egelhof, P
    Golser, R
    Kiseleva, A
    Kiselev, O
    Kutschera, W
    Meier, JP
    Priller, A
    Shrivastava, A
    Steier, P
    Vockenhuber, C
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 520 (1-3): : 63 - 66
  • [39] Identification of some polymeric materials by low-temperature pyrolysis mass spectrometry
    Badawy, SM
    EUROPEAN JOURNAL OF MASS SPECTROMETRY, 2004, 10 (05) : 613 - 617
  • [40] MOSSBAUER STUDY OF LOW-TEMPERATURE OXIDATION IN NATURAL MAGNETITE
    GEDIKOGLU, A
    SCRIPTA METALLURGICA, 1983, 17 (01): : 45 - 48