When artificial parameter evolution gets real: particle filtering for time-varying parameter estimation in deterministic dynamical systems

被引:5
作者
Arnold, Andrea [1 ]
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
基金
美国国家科学基金会;
关键词
sequential Monte Carlo; parameter estimation; time-varying parameters; state-space models; dynamical systems; Bayesian inference; online estimation; STATE; SIMULATION; STIFFNESS; SIZE;
D O I
10.1088/1361-6420/aca55b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Estimating and quantifying uncertainty in unknown system parameters from limited data remains a challenging inverse problem in a variety of real-world applications. While many approaches focus on estimating constant parameters, a subset of these problems includes time-varying parameters with unknown evolution models that often cannot be directly observed. This work develops a systematic particle filtering approach that reframes the idea behind artificial parameter evolution to estimate time-varying parameters in nonstationary inverse problems arising from deterministic dynamical systems. Focusing on systems modeled by ordinary differential equations, we present two particle filter algorithms for time-varying parameter estimation: one that relies on a fixed value for the noise variance of a parameter random walk; another that employs online estimation of the parameter evolution noise variance along with the time-varying parameter of interest. Several computed examples demonstrate the capability of the proposed algorithms in estimating time-varying parameters with different underlying functional forms and different relationships with the system states (i.e. additive vs. multiplicative).
引用
收藏
页数:28
相关论文
共 39 条
[1]   Seasonality and the dynamics of infectious diseases [J].
Altizer, S ;
Dobson, A ;
Hosseini, P ;
Hudson, P ;
Pascual, M ;
Rohani, P .
ECOLOGY LETTERS, 2006, 9 (04) :467-484
[2]  
Arnold A., 2019, 6 INT C COMP MATH BI, ppp 512
[3]  
Arnold A., 2015, DYNAMICAL SYSTEMS DI, P75, DOI [10.3934/proc.2015.0075, DOI 10.3934/PROC.2015.0075]
[4]  
Arnold A., 2020, ADV MATH SCI, P213, DOI [10.1007/978-3-030-42687-3_14, DOI 10.1007/978-3-030-42687-3_14]
[5]  
Arnold A., THESIS CASE W RESERV
[6]   Identification of tissue optical properties during thermal laser-tissue interactions: An ensemble Kalman filter-based approach [J].
Arnold, Andrea ;
Fichera, Loris .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2022, 38 (04)
[7]   An approach to periodic, time-varying parameter estimation using nonlinear filtering [J].
Arnold, Andrea ;
Lloyd, Alun L. .
INVERSE PROBLEMS, 2018, 34 (10)
[8]   Linear multistep methods, particle filtering and sequential Monte Carlo [J].
Arnold, Andrea ;
Calvetti, Daniela ;
Somersalo, Erkki .
INVERSE PROBLEMS, 2013, 29 (08)
[9]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[10]  
Boyce W.E., 2001, Elementary Differential Equations and Boundary Value Problems