Regularity of powers of (parity) binomial edge ideals

被引:2
作者
Shen, Yi-Huang [1 ]
Zhu, Guangjun [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, CAS Wu Wen Tsun Key Lab Math, Hefei 230026, Anhui, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
关键词
Regularity; Binomial edge ideal; Parity binomial edge ideal; d-sequences; Almost complete intersection; COHEN-MACAULAY; ORTHOGONAL REPRESENTATIONS; ASYMPTOTIC-BEHAVIOR; SEQUENCES;
D O I
10.1007/s10801-022-01163-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide exact formulas for the regularity of powers of an almost complete intersection ideal I which is generated by a homogeneous d-sequence. As applications, when I is an almost complete intersection, taking the form of a (parity) binomial edge ideal of a connected graph, we can describe explicitly reg(I-t) for t >= 2. The only exception is when I is the parity binomial edge ideal of a graph which is obtained by adding an edge between two disjoint odd cycles.
引用
收藏
页码:75 / 100
页数:26
相关论文
共 37 条
  • [1] Banerjee A., 2019, Adv. Algebra, V277, P17, DOI [10.1007/978-3-030-11521-02, DOI 10.1007/978-3-030-11521-02, 10.1007/978-3-030-11521-0\\_2]
  • [2] Berlekamp D, 2012, MATH RES LETT, V19, P109
  • [3] Regularity of powers of forests and cycles
    Beyarslan, Selvi
    Ha, Huy Tai
    Tran Nam Trung
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 1077 - 1095
  • [4] Binomial edge ideals of bipartite graphs
    Bolognini, Davide
    Macchia, Antonio
    Strazzanti, Francesco
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 : 1 - 25
  • [5] Asymptotic behaviour of the Castelnuovo-Mumford regularity
    Cutkosky, SD
    Herzog, J
    Trung, NV
    [J]. COMPOSITIO MATHEMATICA, 1999, 118 (03) : 243 - 261
  • [6] NOTES ON REGULARITY STABILIZATION
    Eisenbud, David
    Ulrich, Bernd
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) : 1221 - 1232
  • [7] POWERS OF BINOMIAL EDGE IDEALS WITH QUADRATIC GRoBNER BASES
    Ene, Viviana
    Rinaldo, Giancarlo
    Terai, Naoki
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2022, 246 : 233 - 255
  • [8] On the regularity of binomial edge ideals
    Ene, Viviana
    Zarojanu, Andrei
    [J]. MATHEMATISCHE NACHRICHTEN, 2015, 288 (01) : 19 - 24
  • [9] COHEN-MACAULAY BINOMIAL EDGE IDEALS
    Ene, Viviana
    Herzog, Juergen
    Hibi, Takayuki
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2011, 204 : 57 - 68
  • [10] Grayson D., MACAULAY2 SOFTWARE S