Surface Molecular Encapsulation with Cyclodextrin in Promoting the Activity and Stability of Fe Single-Atom Catalyst for Oxygen Reduction Reaction

被引:18
作者
Chen, Changli [1 ]
Li, Haijing [2 ]
Chen, Jingzhao [3 ]
Li, Dong [1 ]
Chen, Wenxing [1 ]
Dong, Juncai [2 ]
Sun, Mengru [1 ]
Li, Yujing [1 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Construct Tailorable Adv Funct Ma, Expt Ctr Adv Mat, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[3] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
oxygen reduction reaction; singe atom catalyst; stability; surface molecular engineering; HYDROGEN OXIDATION; PLATINUM; CARBON; ELECTROCATALYST; PERFORMANCE; GRAPHENE; CO2;
D O I
10.1002/eem2.12346
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fe single-atom catalysts (Fe-SACs) have been extensively studied as a highly efficient electrocatalyst toward the oxygen reduction reaction (ORR). Nonetheless, they suffer from stability issue induced by dissolution of Fe metal center and the OH- blocking. Herein, a surface molecular engineering strategy is developed by using beta-cyclodextrins (CDs) as a localized molecular encapsulation. The CD-modified Fe-SAC (Fe-SNC-beta-CD) shows obviously improved activity toward the ORR with 0.90 V, 4.10 and 4.09 mA cm(-2) for E-1/2, J(0) and J(k0.9), respectively. Meanwhile, the Fe-SNC-beta-CD shows the excellent long-term stability against aggressive stress and the poisoning. It is confirmed through electrochemical investigation that modification of beta-CD can, on one hand, regulate the atomic Fe coordination chemistry through the interaction between the CD and FeNx moiety, while on the other mitigate the strong adsorption of OH- and function as protective barrier against the poisoning molecules leading to enhanced ORR activity and stability for the Fe-SACs. The molecular encapsulation strategy demonstrates the uniqueness of post-pyrolysis surface molecular engineering for the design of single-atom catalyst.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Two-Dimensional Dirac Nodal Line Carbon Nitride to Anchor Single-Atom Catalyst for Oxygen Reduction Reaction
    Li, Feifei
    Ai, Haoqiang
    Shen, Shiying
    Geng, Jiazhong
    Lo, Kin Ho
    Pan, Hui
    CHEMSUSCHEM, 2022, 15 (06)
  • [42] Design and Preparation of Fe-N5 Catalytic Sites in Single-Atom Catalysts for Enhancing the Oxygen Reduction Reaction in Fuel Cells
    Zhao, Ye-Min
    Zhang, Peng-Cheng
    Xu, Chao
    Zhou, Xin-You
    Liao, Li-Mei
    Wei, Ping-Jie
    Liu, Ershuai
    Chen, Hengquan
    He, Qinggang
    Liu, Jin-Gang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (15) : 17334 - 17342
  • [43] A High-Entropy Single-Atom Catalyst Toward Oxygen Reduction Reaction in Acidic and Alkaline Conditions
    Tamtaji, Mohsen
    Kim, Min Gyu
    Wang, Jun
    Galligan, Patrick Ryan
    Zhu, Haoyu
    Hung, Faan-Fung
    Xu, Zhihang
    Zhu, Ye
    Luo, Zhengtang
    Goddard, William A., III
    Chen, Guanhua
    ADVANCED SCIENCE, 2024, 11 (26)
  • [44] Intrinsic Electrocatalytic Activity Regulation of M-N-C Single-Atom Catalysts for the Oxygen Reduction Reaction
    Zhao, Chang-Xin
    Li, Bo-Quan
    Liu, Jia-Ning
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (09) : 4448 - 4463
  • [45] Green Synthesis of a Highly Efficient and Stable Single-Atom Iron Catalyst Anchored on Nitrogen-Doped Carbon Nanorods for the Oxygen Reduction Reaction
    Wang, Xilong
    Yang, Chen
    Wang, Xiaogang
    Zhu, Hongwei
    Cao, Lijuan
    Chen, Anyong
    Gu, Lin
    Zhang, Qinghua
    Zheng, Lirong
    Liang, Han-Pu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (01): : 137 - 146
  • [46] Porphyrin polymer-derived single-atom Fe assisted by Fe2O3 with oxygen vacancy for efficient oxygen reduction reaction
    Ren, Jianwei
    Yan, Wei
    Liu, Xue
    Wang, Fuling
    Xing, Qianli
    Xiao, Zuoxu
    Liu, Heyuan
    Chen, Yanli
    Li, Xiyou
    APPLIED SURFACE SCIENCE, 2022, 592
  • [47] Theoretical insights into oxygen reduction reaction on Au-based single-atom alloy cluster catalysts
    Pu, Yixuan
    Liu, Jin-Xun
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2024, 37 (05) : 573 - 581
  • [48] 2D Single-Atom Fe-N-C Catalyst Derived from a Layered Complex as an Oxygen Reduction Catalyst for PEMFCs
    Yang, Shuting
    Liu, Xili
    Niu, Fuquan
    Wang, Luyan
    Su, Keke
    Liu, Wenfeng
    Dong, Hongyu
    Yue, Hongyun
    Yin, Yanhong
    ACS APPLIED ENERGY MATERIALS, 2022, : 8791 - 8799
  • [49] Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction
    Yang, Liu
    Cheng, Daojian
    Xu, Haoxiang
    Zeng, Xiaofei
    Wan, Xin
    Shui, Jianglan
    Xiang, Zhonghua
    Cao, Dapeng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (26) : 6626 - 6631
  • [50] Single-atom alloy with Pt-Co dual sites as an efficient electrocatalyst for oxygen reduction reaction
    Cheng, Xing
    Wang, Yueshuai
    Lu, Yue
    Zheng, Lirong
    Sun, Shaorui
    Li, Hongyi
    Chen, Ge
    Zhang, Jiujun
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 306