Inhibition of phospholipase D promotes neurological function recovery and reduces neuroinflammation after spinal cord injury in mice

被引:1
|
作者
Ke, Han [1 ,2 ,3 ,4 ,5 ,6 ]
Bai, Fan [2 ,4 ,5 ,6 ,7 ]
Li, Zihan [2 ,4 ,5 ,6 ,7 ]
Zhu, Yanbing [8 ]
Zhang, Chunjia [2 ,4 ,5 ,6 ,7 ]
Li, Yan [2 ,4 ,5 ,6 ,7 ]
Talifu, Zuliyaer [2 ,3 ,4 ,5 ,6 ,7 ]
Pan, Yunzhu [2 ,3 ,4 ,5 ,6 ,7 ]
Liu, Wubo [1 ,2 ,3 ,4 ,5 ,6 ]
Xu, Xin [2 ,4 ,5 ,6 ,7 ]
Gao, Feng [2 ,4 ,5 ,6 ,7 ]
Yang, Degang [2 ,4 ,5 ,6 ,7 ]
Du, Liangjie [2 ,4 ,5 ,6 ,7 ]
Yu, Yan [2 ,4 ,5 ,6 ,7 ]
Li, Jianjun [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Shandong Univ, Jinan, Shandong, Peoples R China
[2] Beijing Boai Hosp, China Rehabil Res Ctr, Beijing, Peoples R China
[3] Univ Hlth & Rehabil Sci, Qingdao, Shandong, Peoples R China
[4] China Rehabil Sci Inst, Beijing, Beijing, Peoples R China
[5] Beijing Key Lab Neural Injury & Rehabil, Beijing, Peoples R China
[6] Beijing Inst Brain Disorders, Ctr Neural Injury & Repair, Beijing, Peoples R China
[7] Capital Med Univ, Sch Rehabil, Beijing, Peoples R China
[8] Capital Med Univ, Beijing Friendship Hosp, Beijing Clin Res Inst, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
spinal cord injury; phospholipase D; neuroinflammation; transcriptome sequencing analysis; protein microarray analysis; PHOSPHATIDIC-ACID; SCAR FORMATION; INFLAMMATION; RATS;
D O I
10.3389/fncel.2024.1352630
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Introduction Spinal cord injury (SCI) is a severely disabling disease. Hyperactivation of neuroinflammation is one of the main pathophysiological features of secondary SCI, with phospholipid metabolism playing an important role in regulating inflammation. Phospholipase D (PLD), a critical lipid-signaling molecule, is known to be involved in various physiological processes, including the regulation of inflammation. Despite this knowledge, the specific role of PLD in SCI remains unclear.Methods In this study, we constructed mouse models of SCI and administered PLD inhibitor (FIPI) treatment to investigate the efficacy of PLD. Additionally, transcriptome sequencing and protein microarray analysis of spinal cord tissues were conducted to further elucidate its mechanism of action.Results The results showed that PLD expression increased after SCI, and inhibition of PLD significantly improved the locomotor ability, reduced glial scarring, and decreased the damage of spinal cord tissues in mice with SCI. Transcriptome sequencing analysis showed that inhibition of PLD altered gene expression in inflammation regulation. Subsequently, the protein microarray analysis of spinal cord tissues revealed variations in numerous inflammatory factors. Biosignature analysis pointed to an association with immunity, thus confirming the results obtained from transcriptome sequencing.Discussion Collectively, these observations furnish compelling evidence supporting the anti-inflammatory effect of FIPI in the context of SCI, while also offering important insights into the PLD function which may be a potential therapeutic target for SCI.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation
    Lu, Gong-biao
    Niu, Fu-wen
    Zhang, Ying-chun
    Du, Lin
    Liang, Zhi-yuan
    Gao, Yuan
    Yan, Ting-zhen
    Nie, Zhi-kui
    Gao, Kai
    NEURAL REGENERATION RESEARCH, 2016, 11 (11) : 1816 - 1823
  • [32] Methylprednisolone promotes recovery of neurological function after spinal cord injury:association with Wnt/β-catenin signaling pathway activation
    Gong-biao Lu
    Fu-wen Niu
    Ying-chun Zhang
    Lin Du
    Zhi-yuan Liang
    Yuan Gao
    Ting-zhen Yan
    Zhi-kui Nie
    Kai Gao
    Neural Regeneration Research, 2016, 11 (11) : 1816 - 1823
  • [33] Characterization of the early neuroinflammation after spinal cord injury in mice
    Rice, Tiffany
    Larsen, Jennifer
    Rivest, Serge
    Yong, V. Wee
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2007, 66 (03): : 184 - 195
  • [34] Inhibition of amyloid precursor protein secretases reduces recovery after spinal cord injury
    Pajoohesh-Ganji, Ahdeah
    Burns, Mark P.
    Pal-Ghosh, Sonali
    Tadvalkar, Gauri
    Hokenbury, Nicole G.
    Stepp, Mary Ann
    Faden, Alan I.
    BRAIN RESEARCH, 2014, 1560 : 73 - 82
  • [35] Knockdown of MicroRNA-21 Promotes Neurological Recovery After Acute Spinal Cord Injury
    Wei Xie
    Shang-you Yang
    Qianqian Zhang
    Yadong Zhou
    Yi Wang
    Ronghan Liu
    Wenzhao Wang
    Jixue Shi
    Bin Ning
    Tanghong Jia
    Neurochemical Research, 2018, 43 : 1641 - 1649
  • [36] Corrigendum: TAZ induces migration of microglia and promotes neurological recovery after spinal cord injury
    Hu, Xuyang
    Huang, Jinxin
    Li, Yiteng
    Dong, Lei
    Chen, Yihao
    Ouyang, Fangru
    Li, Jianjian
    Li, Ziyu
    Jing, Juehua
    Cheng, Li
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [37] Knockdown of MicroRNA-21 Promotes Neurological Recovery After Acute Spinal Cord Injury
    Xie, Wei
    Yang, Shang-you
    Zhang, Qianqian
    Zhou, Yadong
    Wang, Yi
    Liu, Ronghan
    Wang, Wenzhao
    Shi, Jixue
    Ning, Bin
    Jia, Tanghong
    NEUROCHEMICAL RESEARCH, 2018, 43 (08) : 1641 - 1649
  • [38] Inhibition of TGF-β1 promotes functional recovery after spinal cord injury
    Kohta, Masaaki
    Kohmura, Eiji
    Yamashita, Toshihide
    NEUROSCIENCE RESEARCH, 2009, 65 (04) : 393 - 401
  • [39] Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats
    Chao-Wei Lin
    Bi Chen
    Ke-Lun Huang
    Yu-Sen Dai
    Hong-Lin Teng
    Neuroscience Bulletin, 2016, 32 (02) : 137 - 144
  • [40] Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats
    Chao-Wei Lin
    Bi Chen
    Ke-Lun Huang
    Yu-Sen Dai
    Hong-Lin Teng
    Neuroscience Bulletin, 2016, 32 : 137 - 144