Probabilistic Bernoulli and Euler Polynomials

被引:35
作者
Kim, T. [1 ]
Kim, D. S. [2 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
IDENTITIES; NUMBERS;
D O I
10.1134/S106192084010072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let Y be a random variable whose moment generating function exists in a neighborhood of the origin. The aim of this paper is to introduce and study the probabilistic extension of Bernoulli polynomials and Euler polynomials, namely the probabilistic Bernoulli polynomials associated Y and the probabilistic Euler polynomials associated with Y. Also, we introduce the probabilistic r -Stirling numbers of the second associated Y, the probabilistic two variable Fubini polynomials associated Y, and the probabilistic poly -Bernoulli polynomials associated with Y. We obtain some properties, explicit expressions, certain identities and recurrence relations for those polynomials. As special cases of Y, we treat the gamma random variable with parameters alpha, beta > 0, the Poisson random variable with parameter alpha > 0, and the Bernoulli random variable with probability of success p.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 28 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, V55
[2]  
Adams C. R., 1939, Bull. Amer. Math. Soc, V45, P442, DOI [10.1090/S0002-9904-1939-07003-1, DOI 10.1090/S0002-9904-1939-07003-1]
[3]   Probabilistic Stirling Numbers of the Second Kind and Applications [J].
Adell, Jose A. .
JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (01) :636-652
[4]   Some new identities on the Apostol-Bernoulli polynomials of higher order derived from Bernoulli basis [J].
Bagdasaryan, Armen ;
Araci, Serkan ;
Acikgoz, Mehmet ;
He, Yuan .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05) :2697-2704
[5]  
Carlitz L, 1981, Utilitas Math, V19, P81
[6]  
Chung Sehkyu, 2018, Advanced Studies in Contemporary Mathematics, V28, P577, DOI [10.17777/ascm2017.28.4.577, 10.17777/ascm2017.28.4.577]
[7]  
Comtet L., 1974, Advanced combinatorics, The Art of Finite and Infinite Expansions, DOI [DOI 10.1007/978-94-010-2196-8, https://doi.org/10.1007/978-94-010-2196-8]
[8]  
Gun D., 2020, Adv Stud Contemp Math (kyungshang), V30, P503
[9]  
Kaneko M., 1997, J TH OR NOMBRES BORD, V9, P221
[10]   A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials [J].
Kim, D. ;
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (01) :26-33