Risk-averse stochastic optimal control: An efficiently computable statistical upper bound

被引:2
作者
Guigues, Vincent [1 ]
Shapiro, Alexander [2 ]
Cheng, Yi [2 ]
机构
[1] FGV Praia Botafogo, Sch Appl Math, Rio De Janeiro, Brazil
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
Stochastic programming; Stochastic optimal control; SDDP; Dynamic programming; Risk measures; Statistical upper bounds; PROGRAMS; DECOMPOSITION; CONVERGENCE;
D O I
10.1016/j.orl.2023.05.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we discuss an application of the Stochastic Dual Dynamic Programming (SDDP) type algorithm to nested risk-averse formulations of Stochastic Optimal Control (SOC) problems. We propose a construction of a statistical upper bound for the optimal value of risk-averse SOC problems. This outlines an approach to a solution of a long standing problem in that area of research. The bound holds for a large class of convex and monotone conditional risk mappings. Finally, we show the validity of the statistical upper bound to solve a real-life stochastic hydro-thermal planning problem. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:393 / 400
页数:8
相关论文
共 32 条