In this paper, we discuss an application of the Stochastic Dual Dynamic Programming (SDDP) type algorithm to nested risk-averse formulations of Stochastic Optimal Control (SOC) problems. We propose a construction of a statistical upper bound for the optimal value of risk-averse SOC problems. This outlines an approach to a solution of a long standing problem in that area of research. The bound holds for a large class of convex and monotone conditional risk mappings. Finally, we show the validity of the statistical upper bound to solve a real-life stochastic hydro-thermal planning problem. (c) 2023 Elsevier B.V. All rights reserved.
机构:
MC&E Res & Dev, BR-37500054 Itajuba, MG, Brazil
Univ Texas Austin, Grad Program Operat Res & Ind Engn, Austin, TX 78712 USAMC&E Res & Dev, BR-37500054 Itajuba, MG, Brazil
de Queiroz, Anderson Rodrigo
Morton, David P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Grad Program Operat Res & Ind Engn, Austin, TX 78712 USAMC&E Res & Dev, BR-37500054 Itajuba, MG, Brazil
机构:
MC&E Res & Dev, BR-37500054 Itajuba, MG, Brazil
Univ Texas Austin, Grad Program Operat Res & Ind Engn, Austin, TX 78712 USAMC&E Res & Dev, BR-37500054 Itajuba, MG, Brazil
de Queiroz, Anderson Rodrigo
Morton, David P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Grad Program Operat Res & Ind Engn, Austin, TX 78712 USAMC&E Res & Dev, BR-37500054 Itajuba, MG, Brazil