THE UNIT GROUPS OF SEMISIMPLE GROUP ALGEBRAS OF SOME NON-METABELIAN GROUPS OF ORDER 144

被引:2
作者
Mittal, Gaurav [1 ]
Sharma, Rajendra Kumar [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttarakhand, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
来源
MATHEMATICA BOHEMICA | 2023年 / 148卷 / 04期
关键词
unit group; finite field; Wedderburn decomposition; WEDDERBURN DECOMPOSITION;
D O I
10.21136/MB.2022.0067-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider all the non-metabelian groups G of order 144 that have exponent either 36 or 72 and deduce the unit group U(F-q G) of semisimple group algebra F-q G. Here, q denotes the power of a prime, i.e., q = p(r) for p prime and a positive integer r. Up to isomorphism, there are 6 groups of order 144 that have exponent either 36 or 72. Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order 144 that are a direct product of two nontrivial groups. In all, this paper covers the unit groups of semisimple group algebras of 17 non-metabelian groups.
引用
收藏
页码:631 / 646
页数:16
相关论文
共 21 条
  • [1] [Anonymous], 1978, Lecture Notes in Mathematics
  • [2] The Algebraic Structure of Finite Metabelian Group Algebras
    Bakshi, Gurmeet K.
    Gupta, Shalini
    Passi, Inder Bir S.
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2240 - 2257
  • [3] Lie properties of the group algebra and the nilpotency class of the group of units
    Bovdi, AA
    Kurdics, J
    [J]. JOURNAL OF ALGEBRA, 1999, 212 (01) : 28 - 64
  • [4] Summands of finite group algebras
    Dietzel, Carsten
    Mittal, Gaurav
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (04) : 1011 - 1014
  • [5] Simple components of the center of FG/J(FG)
    Ferraz, Raul Antonio
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) : 3191 - 3199
  • [6] Finite semisimple group algebra of a normally monomial group
    Gupta, Shalini
    Maheshwary, Sugandha
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (01) : 159 - 177
  • [7] Hurley Barry, 2011, Int J Pure Appl Math, V69, P67
  • [8] Hurley Paul, 2009, International Journal of Information and Coding Theory, V1, P57, DOI 10.1504/IJICOT.2009.024047
  • [9] The unit group of FS4
    Khan, M.
    Sharma, R. K.
    Srivastava, J. B.
    [J]. ACTA MATHEMATICA HUNGARICA, 2008, 118 (1-2) : 105 - 113
  • [10] Lidl R., 1994, INTRO FINITE FIELDS, DOI DOI 10.1017/CBO9781139172769