Time Series Anomaly Detection using Diffusion-based Models

被引:10
作者
Pintilie, Ioana [1 ,2 ]
Manolache, Andrei [1 ,3 ]
Brad, Florin [1 ]
机构
[1] Bitdefender, Bucharest, Romania
[2] Univ Bucharest, Bucharest, Romania
[3] Univ Stuttgart, Stuttgart, Germany
来源
2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023 | 2023年
关键词
Anomaly Detection; Multivariate Time Series; Diffusion; SUPPORT;
D O I
10.1109/ICDMW60847.2023.00080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion models have been recently used for anomaly detection (AD) in images. In this paper we investigate whether they can also be leveraged for AD on multivariate time series (MTS). We test two diffusion-based models and compare them to several strong neural baselines. We also extend the PA%K protocol, by computing a ROCK-AUC metric, which is agnostic to both the detection threshold and the ratio K of correctly detected points. Our models outperform the baselines on synthetic datasets and are competitive on real-world datasets, illustrating the potential of diffusion-based methods for AD in multivariate time series.
引用
收藏
页码:570 / 578
页数:9
相关论文
共 59 条
[1]  
Ahmed C.M., 2017, P 3 INT WORKSH CYB S, P25
[2]   USAD : UnSupervised Anomaly Detection on Multivariate Time Series [J].
Audibert, Julien ;
Michiardi, Pietro ;
Guyard, Frederic ;
Marti, Sebastien ;
Zuluaga, Maria A. .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :3395-3404
[3]  
Bin Z, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4433
[4]   A Review on Outlier/Anomaly Detection in Time Series Data [J].
Blazquez-Garcia, Ane ;
Conde, Angel ;
Mori, Usue ;
Lozano, Jose A. .
ACM COMPUTING SURVEYS, 2022, 54 (03)
[5]  
Braei M., 2020, Preprints
[6]   LOF: Identifying density-based local outliers [J].
Breunig, MM ;
Kriegel, HP ;
Ng, RT ;
Sander, J .
SIGMOD RECORD, 2000, 29 (02) :93-104
[7]  
Chen YH, 2023, Arxiv, DOI [arXiv:2307.00754, 10.14778/3632093.3632101, DOI 10.14778/3632093.3632101, DOI 10.48550/ARXIV.2307.00754]
[8]  
Cho K, 2014, P 2014 C EMP METH NA, P1724
[9]   Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines [J].
Choi, Kukjin ;
Yi, Jihun ;
Park, Changhwa ;
Yoon, Sungroh .
IEEE ACCESS, 2021, 9 :120043-120065
[10]  
Darban Z.Z., 2022, Preprints