Quantum Metrology Assisted by Machine Learning

被引:6
作者
Huang, Jiahao [1 ,2 ,3 ]
Zhuang, Min [1 ,2 ,4 ]
Zhou, Jungeng [3 ]
Shen, Yi [3 ]
Lee, Chaohong [1 ,2 ,4 ]
机构
[1] Shenzhen Univ, Inst Quantum Precis Measurement, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Astron, Lab Quantum Engn & Quantum Metrol, Zhuhai Campus, Zhuhai 519082, Peoples R China
[4] Quantum Sci Ctr Guangdong Hongkong Macao Greater B, Shenzhen 518045, Peoples R China
基金
中国国家自然科学基金;
关键词
machine learning; optimization; quantum entanglement; quantum metrology; FISHER INFORMATION; STATE PREPARATION; COHERENT STATES; ENTANGLEMENT; INTERFEROMETRY; LIMIT; MATTER; NOISE; GENERATION; ADVANTAGE;
D O I
10.1002/qute.202300329
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum metrology aims to measure physical quantities based on fundamental quantum principles, enhancing measurement precision through resources like quantum entanglement and quantum correlations. This field holds promise for advancing quantum-enhanced sensors, including atomic clocks and magnetometers. However, practical constraints exist in the four fundamental steps of quantum metrology, including initialization, sensing, readout, and estimation. Valuable resources, such as coherence time, impose limitations on the performance of quantum sensors. Machine learning, enabling learning and prediction without explicit knowledge, provides a powerful tool in optimizing quantum metrology with limited resources. This article reviews the fundamental principles, potential applications, and recent advancements in quantum metrology assisted by machine learning. In recent, there appears a hectic development in the field of machine learning, with applications now touching every sector of quantum technologies. With a focus on optimizing the key metrology stages for better measurement precision, this review illustrates the fundamental principles, potential applications, and recent advancements in quantum metrology assisted by machine learning.image
引用
收藏
页数:29
相关论文
共 50 条
[31]   Quantum Embedding Search for Quantum Machine Learning [J].
Nguyen, Nam ;
Chen, Kwang-Cheng .
IEEE ACCESS, 2022, 10 :41444-41456
[32]   Quantum metrology [J].
Xiang Guo-Yong ;
Guo Guang-Can .
CHINESE PHYSICS B, 2013, 22 (11)
[33]   Quantum metrology from a quantum information science perspective [J].
Toth, Geza ;
Apellaniz, Iagoba .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (42)
[34]   True precision limits in quantum metrology [J].
Jarzyna, Marcin ;
Demkowicz-Dobrzanski, Rafal .
NEW JOURNAL OF PHYSICS, 2015, 17
[35]   Optimal metrology with programmable quantum sensors [J].
Marciniak, Christian D. ;
Feldker, Thomas ;
Pogorelov, Ivan ;
Kaubruegger, Raphael ;
Vasilyev, Denis V. ;
van Bijnen, Rick ;
Schindler, Philipp ;
Zoller, Peter ;
Blatt, Rainer ;
Monz, Thomas .
NATURE, 2022, 603 (7902) :604-+
[36]   Quantum metrology with unitary parametrization processes [J].
Liu, Jing ;
Jing, Xiao-Xing ;
Wang, Xiaoguang .
SCIENTIFIC REPORTS, 2015, 5
[37]   Quantum interferometric metrology with entangled photons [J].
Chen, Yuanyuan ;
Hong, Ling ;
Chen, Lixiang .
FRONTIERS IN PHYSICS, 2022, 10
[38]   Parity measurements in quantum optical metrology [J].
Chiruvelli, Aravind ;
Lee, Hwang .
JOURNAL OF MODERN OPTICS, 2011, 58 (11) :945-953
[39]   Matrix Product States for Quantum Metrology [J].
Jarzyna, Marcin ;
Demkowicz-Dobrzanski, Rafal .
PHYSICAL REVIEW LETTERS, 2013, 110 (24)
[40]   Soft metrology based on machine learning: a review [J].
Vallejo, Marcela ;
de la Espriella, Carolina ;
Gomez-Santamaria, Juliana ;
Felipe Ramirez-Barrera, Andres ;
Delgado-Trejos, Edilson .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (03)