Quantum Metrology Assisted by Machine Learning

被引:8
作者
Huang, Jiahao [1 ,2 ,3 ]
Zhuang, Min [1 ,2 ,4 ]
Zhou, Jungeng [3 ]
Shen, Yi [3 ]
Lee, Chaohong [1 ,2 ,4 ]
机构
[1] Shenzhen Univ, Inst Quantum Precis Measurement, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Astron, Lab Quantum Engn & Quantum Metrol, Zhuhai Campus, Zhuhai 519082, Peoples R China
[4] Quantum Sci Ctr Guangdong Hongkong Macao Greater B, Shenzhen 518045, Peoples R China
基金
中国国家自然科学基金;
关键词
machine learning; optimization; quantum entanglement; quantum metrology; FISHER INFORMATION; STATE PREPARATION; COHERENT STATES; ENTANGLEMENT; INTERFEROMETRY; LIMIT; MATTER; NOISE; GENERATION; ADVANTAGE;
D O I
10.1002/qute.202300329
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum metrology aims to measure physical quantities based on fundamental quantum principles, enhancing measurement precision through resources like quantum entanglement and quantum correlations. This field holds promise for advancing quantum-enhanced sensors, including atomic clocks and magnetometers. However, practical constraints exist in the four fundamental steps of quantum metrology, including initialization, sensing, readout, and estimation. Valuable resources, such as coherence time, impose limitations on the performance of quantum sensors. Machine learning, enabling learning and prediction without explicit knowledge, provides a powerful tool in optimizing quantum metrology with limited resources. This article reviews the fundamental principles, potential applications, and recent advancements in quantum metrology assisted by machine learning. In recent, there appears a hectic development in the field of machine learning, with applications now touching every sector of quantum technologies. With a focus on optimizing the key metrology stages for better measurement precision, this review illustrates the fundamental principles, potential applications, and recent advancements in quantum metrology assisted by machine learning.image
引用
收藏
页数:29
相关论文
共 50 条
[21]   Quantum-dense metrology [J].
Steinlechner, Sebastian ;
Bauchrowitz, Joeran ;
Meinders, Melanie ;
Mueller-Ebhardt, Helge ;
Danzmann, Karsten ;
Schnabel, Roman .
NATURE PHOTONICS, 2013, 7 (08) :626-629
[22]   Coherent measurements in quantum metrology [J].
Micadei, K. ;
Rowlands, D. A. ;
Pollock, F. A. ;
Celeri, L. C. ;
Serra, R. M. ;
Modi, K. .
NEW JOURNAL OF PHYSICS, 2015, 17
[23]   Multiparameter Gaussian quantum metrology [J].
Nichols, Rosanna ;
Liuzzo-Scorpo, Pietro ;
Knott, Paul A. ;
Adesso, Gerardo .
PHYSICAL REVIEW A, 2018, 98 (01)
[24]   Examples of modern quantum sensing and metrology with new results on photon-added coherent states [J].
Luine, Jerome ;
Singh, Anjali ;
Gard, Bryan ;
Olson, Jonathan .
QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XIII, 2016, 9755
[25]   Usefulness of entanglement-assisted quantum metrology [J].
Huang, Zixin ;
Macchiavello, Chiara ;
Maccone, Lorenzo .
PHYSICAL REVIEW A, 2016, 94 (01)
[26]   Machine Learning Applied to Quantum Synchronization-Assisted Probing [J].
Garau Estarellas, Gabriel ;
Luca Giorgi, Gian ;
Soriano, Miguel C. ;
Zambrini, Roberta .
ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (7-8)
[27]   Multimode nonlinear integrated optics for quantum and machine learning-assisted signal processing [J].
Di Lauro, Luigi ;
Alamgir, Imtiaz ;
Sciara, Stefania ;
Dmitriev, Pavel ;
Mazoukh, Celine ;
Yu, Hao ;
Kamali, Seyedeh Nazanin. ;
Fazili, Riza ;
Rahim, Aadhi A. ;
Fischer, Bennet ;
Little, Brent E. ;
Chu, Sai T. ;
Moss, David J. ;
Wang, Zhiming ;
Morandotti, Roberto .
2023 IEEE PHOTONICS SOCIETY SUMMER TOPICALS MEETING SERIES, SUM, 2023,
[28]   Adaptive Circuit Learning for Quantum Metrology [J].
Ma, Ziqi ;
Gokhale, Pranav ;
Zheng, Tian-Xing ;
Zhou, Sisi ;
Yu, Xiaofei ;
Jiang, Liang ;
Maurer, Peter ;
Chong, Frederic T. .
2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, :419-430
[29]   Quantum metrology with one-dimensional superradiant photonic states [J].
Paulisch, V ;
Perarnau-Llobet, M. ;
Gonzalez-Tudela, A. ;
Cirac, J., I .
PHYSICAL REVIEW A, 2019, 99 (04)
[30]   HASM quantum machine learning [J].
Yue, Tianxiang ;
Wu, Chenchen ;
Liu, Yi ;
Du, Zhengping ;
Zhao, Na ;
Jiao, Yimeng ;
Xu, Zhe ;
Shi, Wenjiao .
SCIENCE CHINA-EARTH SCIENCES, 2023, 66 (09) :1937-1945