Solubility of Nd2O3 in LiF and LiF-NdF3 molten salts

被引:1
作者
Fu, ZanHui [1 ,2 ]
Liao, ChunFa [1 ,2 ]
Wang, Xu [1 ,2 ]
Que, LiangHua [1 ,2 ]
Zhou, Xun [1 ,2 ]
Chen, ShuMei [1 ,2 ]
机构
[1] Jiangxi Univ Sci & Technol, Inst Met & Chem Engn, Ganzhou 341000, Peoples R China
[2] Natl Rare Earth Funct Mat Innovat Ctr, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
ND;
D O I
10.1039/d3nj04179d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurately measuring the solubility of Nd2O3 in the LiF-NdF3 molten salt system is of great significance for establishing a reasonable feeding system for the electrolytic production of the rare earth metal neodymium and its alloys. Based on the isothermal saturation method, this article developed a membrane method for accurately measuring the solubility of rare earth oxides in molten salts, which solves the problem that the solubility values obtained by traditional isothermal saturation methods are too high due to the presence of undissolved Nd2O3 or NdOF in the molten salt supernatant. This method also has reference value for studying the solubility of other substances in molten salts. Simultaneously, the experimental process uses NdOF instead of Nd2O3 to indirectly study the solubility of Nd2O3 in LiF-NdF3 molten salt, solving the problem of analysis errors caused by chemical reactions between Nd2O3 and NdF3 in the molten salt system. The effects of dissolution time, dissolution temperature, and NdF3 concentration on the solubility of Nd2O3 were studied in detail. The experimental results show that, under the conditions of 1373 K and 9 h dissolution time in LiF molten salt, the maximum solubility of Nd2O3 is 0.32% (wt%). In the LiF-NdF3 binary molten salt system, when the concentration of NdF3 is 23 mol%, the maximum solubility of Nd2O3 is 2.77% (wt%) in the temperature range of 1173 K to 1373 K. At 1273 K, when the concentration of NdF3 is in the range of 16 mol% to 45.5 mol%, the maximum solubility is 3.37% (wt%), which provides basic data for the formulation of an accurate feeding system for electrolytic neodymium production. Using EPMA, the analysis of the quenched sample of the LiF-23 mol% NdF3-3.5 wt% Nd2O3 molten salt system at 1473 K revealed the presence of the Nd3O2F5 compound in the system.
引用
收藏
页码:2280 / 2289
页数:10
相关论文
共 50 条
[31]   Exsolution-like synthesis of Ni/(Nd2O3,CaO) nanocomposites from Nd2-xCaxNiO4 precursors for catalytic applications [J].
Malyshev, Sergey A. ;
Shlyakhtin, Oleg A. ;
Loktev, Alexey S. ;
Mazo, Galina N. ;
Timofeev, Grigoriy M. ;
Mukhin, Igor E. ;
Kaplin, Igor Yu ;
Svetogorov, Roman D. ;
Valeev, Rishat G. ;
Dedov, Alexey G. .
JOURNAL OF SOLID STATE CHEMISTRY, 2022, 312
[32]   Electrical characteristics of bismuth titanate ceramics and glass-ceramics, containing SiO2 and Nd2O3 as additives [J].
Slavov, Stanislav S. ;
Krapchanska, Milena Z. ;
Kashchieva, Elena P. ;
Parvanov, Svetlin B. ;
Dimitriev, Yanko B. .
PROGRESS IN FUNCTIONAL MATERIALS, 2013, 538 :233-237
[33]   Enhancing photocatalytic dye degradation efficiency through the utilization of shock wave effects on neodymium oxide (Nd2O3) [J].
Sokkalingam, Rajkumar ;
Raja, Giri Devaraj ;
Panghal, Abhishek ;
Roy, Susanta Sinha ;
Sankaran, Esakki Muthu ;
Anbalagan, Barrathi ;
Sonachalam, Arumugam .
JOURNAL OF MOLECULAR STRUCTURE, 2024, 1318
[34]   Photothermal-driven CO2 reduction over Nd2O3/TiO2 heterojunction catalysts in aqueous medium [J].
Zhang, Si-Meng ;
He, Zhen-Hong ;
Shi, Jiao-Jiao ;
Wang, Sen-Wang ;
Liu, Jiajie ;
Wang, Kuan ;
Wang, Weitao ;
Yang, Yang ;
Wang, Huan ;
Liu, Zhao-Tie .
MOLECULAR CATALYSIS, 2024, 559
[35]   Electrochemical Dy-alloying behaviors of Ni-based alloys in molten LiF-CaF2-DyF3 and LiCl-KCl-DyCl3: Effects of temperature and electrolysis potential [J].
Yasuda, Kouji ;
Oishi, Tetsuo ;
Kagotani, Tomomi ;
Kawaguchi, Kenji ;
Yaguchi, Miki ;
Enomoto, Terumichi ;
Nohira, Toshiyuki .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 889
[36]   The Photocatalytic Performance of Nd2O3 Doped CuO Nanoparticles with Enhanced Methylene Blue Degradation: Synthesis, Characterization and Comparative Study [J].
El-Sayed, Fatma ;
Hussien, Mai S. A. ;
Mohammed, Mervat, I ;
Ganesh, Vanga ;
AlAbdulaal, Thekrayat H. ;
Zahran, Heba Y. ;
Yahia, Ibrahim S. ;
Hegazy, Hosam H. ;
Abdel-wahab, Mohamed Sh ;
Shkir, Mohd ;
Valarasu, Santiyagu ;
Ibrahim, Medhat A. .
NANOMATERIALS, 2022, 12 (07)
[37]   Formation of solid solutions of multiferroics in the Bi2O3-Nd2O3-Fe2O3 system [J].
Klyndyuk, A. I. ;
Tugova, E. A. ;
Karpov, O. N. ;
Chizhova, E. A. ;
Tomkovich, M. V. ;
Kononovich, V. M. .
RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2016, 86 (10) :2282-2287
[38]   Effect of CeO2 and Nd2O3 on phases, microstructure and aqueous chemical durability of borosilicate glass-ceramics for nuclear waste immobilization [J].
Zhu, Hanzhen ;
Wang, Fu ;
Liao, Qilong ;
Wang, Yuanlin ;
Zhu, Yongchang .
MATERIALS CHEMISTRY AND PHYSICS, 2020, 249
[39]   Properties of oxysulfide phases and phase diagram of the Nd2S3-Nd2O3 system [J].
Osseni, S. A. ;
Andreev, P. O. ;
Polkovnikov, A. A. ;
Zakharov, B. A. ;
Aleksandrovsky, A. S. ;
Abulkhaev, M. U. ;
Volkova, S. S. ;
Kamaev, D. N. ;
Kovenskiy, I. M. ;
Nesterova, N., V ;
Kudomanov, M., V ;
Andreev, O., V .
JOURNAL OF SOLID STATE CHEMISTRY, 2022, 314
[40]   Effects of LiF on microwave dielectric properties of 0.25Ca0.8Sr0.2TiO3–0.75Li0.5Nd0.5TiO3 ceramics [J].
FEI LIU ;
CHANGLAI YUAN ;
XINYU LIU ;
JING JING QU .
Bulletin of Materials Science, 2015, 38 :1223-1229