Phase-Engineered WS2 Monolayer Quantum Dots by Rhenium Doping

被引:4
|
作者
Lee, Hoon Ju [1 ,2 ]
Choe, Myeonggi [3 ,4 ]
Yang, Weiguang [1 ]
Lee, Suk Woo [3 ,4 ]
Park, Young Jin [1 ]
Hwang, Hyuntae [2 ]
Chhowalla, Manish [5 ]
Lee, Zonghoon [3 ,4 ]
Shin, Hyeon Suk [1 ,2 ,6 ,7 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Dept Chem, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Energy Engn, Ulsan 44919, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, Inst Basic Sci, Ctr Multidimens Carbon Mat, Ulsan 44919, South Korea
[4] Ulsan Natl Inst Sci & Technol UNIST, Dept Mat Sci & Engn, Ulsan 44919, South Korea
[5] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[6] Ulsan Natl Inst Sci & Technol UNIST, Ctr Multidimens Carbon Mat, Dept Energy Engn, Ulsan 44919, South Korea
[7] Ulsan Natl Inst Sci & Technol UNIST, Low Dimens Carbon Mat Ctr, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
transition metal dichalcogenide; tungsten disulfide; phase transition; quantumdot; doping; hydrogen evolution reaction; colloidal method; CHEMICAL-VAPOR-DEPOSITION; METAL DICHALCOGENIDES; MOS2; NANOSHEETS; TRANSITION; RES2; PHOTOLUMINESCENCE; SIZE;
D O I
10.1021/acsnano.3c11086
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal dichalcogenides (TMDs) occur in the thermodynamically stable trigonal prismatic (2H) phase or the metastable octahedral (1T) phase. Phase engineering of TMDs has proven to be a powerful tool for applications in energy storage devices as well as in electrocatalysis. However, the mechanism of the phase transition in TMDs and the synthesis of phase-controlled TMDs remain challenging. Here we report the synthesis of Re-doped WS2 monolayer quantum dots (MQDs) using a simple colloidal chemical process. We find that the incorporation of a small amount of electron-rich Re atoms in WS2 changes the metal-metal distance in the 2H phase initially, which introduces strain in the structure (strained 2H (S2H) phase). Increasing the concentration of Re atoms sequentially transforms the S2H phase into the 1T and 1T ' phases to release the strain. In addition, we performed controlled experiments by doping MoS2 with Re to distinguish between Re and Mo atoms in scanning transmission electron microscopy images and quantified the concentration range of Re atoms in each phase of MoS2, indicating that phase engineering of WS2 or MoS2 is possible by doping with different amounts of Re atoms. We demonstrate that the 1T ' WS2 MQDs with 49 at. % Re show superior catalytic performance (a low Tafel slope of 44 mV/dec, a low overpotential of 158 mV at a current density of 10 mA/cm(2), and long-term durability up to 5000 cycles) for the hydrogen evolution reaction. Our findings provide understanding and control of the phase transitions in TMDs, which will allow for the efficient manufacturing and translation of phase-engineered TMDs.
引用
收藏
页码:25731 / 25738
页数:8
相关论文
共 50 条
  • [31] Pressure-Dependent Strong Photoluminescence of Excitons Bound to Defects in WS2 Quantum Dots
    Shen, Pengfei
    Niu, Shifeng
    Wang, Lingrui
    Liu, Yanhui
    Li, Quanjun
    Cui, Tian
    Liu, Bingbing
    ADVANCED MATERIALS INTERFACES, 2018, 5 (13):
  • [32] Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation
    Bayat, A.
    Saievar-Iranizad, E.
    JOURNAL OF LUMINESCENCE, 2017, 185 : 236 - 240
  • [33] Charge density wave states in phase-engineered monolayer VTe2
    Zhu, Zhi-Li
    Liu, Zhong-Liu
    Wu, Xu
    Li, Xuan-Yi
    Shi, Jin-An
    Liu, Chen
    Qian, Guo-Jian
    Zheng, Qi
    Huang, Li
    Lin, Xiao
    Wang, Jia-Ou
    Chen, Hui
    Zhou, Wu
    Sun, Jia-Tao
    Wang, Ye-Liang
    Gao, Hong-Jun
    CHINESE PHYSICS B, 2022, 31 (07)
  • [34] Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots
    Liu, Yu
    Li, Han
    Zheng, Xin
    Cheng, Xiangai
    Jiang, Tian
    OPTICAL MATERIALS EXPRESS, 2017, 7 (04): : 1327 - 1334
  • [35] Efficient control of emission and carrier polarity in WS2 monolayer by indium doping
    Chen, Ying
    Jiang, Ying
    Yi, Chen
    Liu, Huawei
    Chen, Shula
    Sun, Xingxia
    Ma, Chao
    Li, Dong
    He, Chenglin
    Luo, Ziyu
    Jiang, Feng
    Zheng, Weihao
    Zheng, Biyuan
    Xu, Boyi
    Xu, Zheyuan
    Pan, Anlian
    SCIENCE CHINA-MATERIALS, 2021, 64 (06) : 1449 - 1456
  • [36] Rational Control of Size and Photoluminescence of WS2 Quantum Dots for White Light-Emitting Diodes
    Yin, Wenxu
    Bai, Xue
    Chen, Ping
    Zhang, Xiaoyu
    Su, Liang
    Ji, Changyin
    Gao, Haoming
    Song, Hongwei
    Yu, William W.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (50) : 43824 - 43830
  • [37] Photoluminescence inhomogeneity and excitons in CVD-grown monolayer WS2
    Ren, Dan-Dan
    Qin, Jing-Kai
    Li, Yang
    Miao, Peng
    Sun, Zhao-Yuan
    Xu, Ping
    Zhen, Liang
    Xu, Cheng-Yan
    OPTICAL MATERIALS, 2018, 80 : 203 - 208
  • [38] Laser-induced fabrication of nanoporous monolayer WS2 membranes
    Danda, Gopinath
    Das, Paul Masih
    Drndic, Marija
    2D MATERIALS, 2018, 5 (03):
  • [39] Monolayer WS2 Nanopores for DNA Translocation with Light -Adjustable Sizes
    Danda, Gopinath
    Das, Paul Masih
    Chou, Yung-Chien
    Mlack, Jerome T.
    Parkin, William M.
    Naylor, Carl H.
    Fujisawa, Kazunori
    Zhang, Tianyi
    Fulton, Laura Beth
    Terrones, Mauricio
    Johnson, Alan T. Charlie
    Drndic, Marija
    ACS NANO, 2017, 11 (02) : 1937 - 1945
  • [40] Mixed multilayered vertical heterostructures utilizing strained monolayer WS2
    Sheng, Yuewen
    Xu, Wenshuo
    Wang, Xiaochen
    He, Zhengyu
    Rong, Youmin
    Warner, Jamie H.
    NANOSCALE, 2016, 8 (05) : 2639 - 2647