Phase-Engineered WS2 Monolayer Quantum Dots by Rhenium Doping

被引:4
|
作者
Lee, Hoon Ju [1 ,2 ]
Choe, Myeonggi [3 ,4 ]
Yang, Weiguang [1 ]
Lee, Suk Woo [3 ,4 ]
Park, Young Jin [1 ]
Hwang, Hyuntae [2 ]
Chhowalla, Manish [5 ]
Lee, Zonghoon [3 ,4 ]
Shin, Hyeon Suk [1 ,2 ,6 ,7 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Dept Chem, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Energy Engn, Ulsan 44919, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, Inst Basic Sci, Ctr Multidimens Carbon Mat, Ulsan 44919, South Korea
[4] Ulsan Natl Inst Sci & Technol UNIST, Dept Mat Sci & Engn, Ulsan 44919, South Korea
[5] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[6] Ulsan Natl Inst Sci & Technol UNIST, Ctr Multidimens Carbon Mat, Dept Energy Engn, Ulsan 44919, South Korea
[7] Ulsan Natl Inst Sci & Technol UNIST, Low Dimens Carbon Mat Ctr, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
transition metal dichalcogenide; tungsten disulfide; phase transition; quantumdot; doping; hydrogen evolution reaction; colloidal method; CHEMICAL-VAPOR-DEPOSITION; METAL DICHALCOGENIDES; MOS2; NANOSHEETS; TRANSITION; RES2; PHOTOLUMINESCENCE; SIZE;
D O I
10.1021/acsnano.3c11086
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal dichalcogenides (TMDs) occur in the thermodynamically stable trigonal prismatic (2H) phase or the metastable octahedral (1T) phase. Phase engineering of TMDs has proven to be a powerful tool for applications in energy storage devices as well as in electrocatalysis. However, the mechanism of the phase transition in TMDs and the synthesis of phase-controlled TMDs remain challenging. Here we report the synthesis of Re-doped WS2 monolayer quantum dots (MQDs) using a simple colloidal chemical process. We find that the incorporation of a small amount of electron-rich Re atoms in WS2 changes the metal-metal distance in the 2H phase initially, which introduces strain in the structure (strained 2H (S2H) phase). Increasing the concentration of Re atoms sequentially transforms the S2H phase into the 1T and 1T ' phases to release the strain. In addition, we performed controlled experiments by doping MoS2 with Re to distinguish between Re and Mo atoms in scanning transmission electron microscopy images and quantified the concentration range of Re atoms in each phase of MoS2, indicating that phase engineering of WS2 or MoS2 is possible by doping with different amounts of Re atoms. We demonstrate that the 1T ' WS2 MQDs with 49 at. % Re show superior catalytic performance (a low Tafel slope of 44 mV/dec, a low overpotential of 158 mV at a current density of 10 mA/cm(2), and long-term durability up to 5000 cycles) for the hydrogen evolution reaction. Our findings provide understanding and control of the phase transitions in TMDs, which will allow for the efficient manufacturing and translation of phase-engineered TMDs.
引用
收藏
页码:25731 / 25738
页数:8
相关论文
共 50 条
  • [21] Defects in monolayer WS2 grown via sulfurization of WSe2
    Zhang, Shunhui
    Lan, Xiang
    Liu, Hang
    Zhang, Xuyang
    Zhang, Baihui
    Ao, Zhikang
    Zhang, Tian
    Chen, Peng
    Yang, Xiangdong
    Ouyang, Fangping
    Zhang, Zhengwei
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2024, 34 (02) : 323 - 328
  • [22] Enhancing Nonradiative Energy Transfer between Nitridized Carbon Quantum Dots and Monolayer WS2
    Su, Weitao
    Li, Jiake
    Chen, Fei
    Fu, Li
    Ding, Su
    Zhao, Shichao
    Zhang, Qi
    Gao, Yunhua
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (41) : 25456 - 25463
  • [23] Salt assisted sonochemical exfoliation and synthesis of highly stable few-to-monolayer WS2 quantum dots with tunable optical properties
    Kapatel, Sanni
    Mania, Chandresh
    Sumesh, C. K.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (10) : 7184 - 7189
  • [24] Oxidation of Monolayer WS2 in Ambient Is a Photoinduced Process
    Kotsakidis, Jimmy C.
    Zhang, Quianhui
    Vazquez de Parga, Amadeo L.
    Currie, Marc
    Helmerson, Kristian
    Gaskill, D. Kurt
    Fuhrer, Michael S.
    NANO LETTERS, 2019, 19 (08) : 5205 - 5215
  • [25] CdSe Quantum Dots Doped WS2 Nanoflowers for Enhanced Solar Hydrogen Production
    Tekaigne, Mahider
    Hasani, Amirhossein
    Quyet Van Le
    Thang Phan Nguyen
    Choi, Kyoung Soon
    Lee, Tae Hyung
    Jang, Ho Won
    Luo, Zhengtang
    Kim, Soo Young
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2019, 216 (09):
  • [26] Monolayer Superconductivity in WS2
    Zheliuk, Oleksandr
    Lu, Jianming
    Yang, Jie
    Ye, Jianting
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (09):
  • [27] Localized state effect and exciton dynamics for monolayer WS2
    Xu, Xuejun
    Li, Lihui
    Yang, Mingming
    Guo, Qinglin
    Wang, Ying
    Li, Xiaoli
    Zhuang, Xiujuan
    Liang, Baolai
    OPTICS EXPRESS, 2021, 29 (04) : 5856 - 5866
  • [28] Superlubricity of epitaxial monolayer WS2 on graphene
    Buch, Holger
    Rossi, Antonio
    Forti, Stiven
    Convertino, Domenica
    Tozzini, Valentina
    Coletti, Camilla
    NANO RESEARCH, 2018, 11 (11) : 5946 - 5956
  • [29] Interaction of gases with monolayer WS2: an in situ spectroscopy study
    Rao, Rahul
    Kim, Hyunil
    Perea-Lopez, Nestor
    Terrones, Mauricio
    Maruyama, Benji
    NANOSCALE, 2021, 13 (26) : 11470 - 11477
  • [30] Postgrowth Substitutional Tin Doping of 2D WS2 Crystals Using Chemical Vapor Deposition
    Chang, Ren-Jie
    Sheng, Yuewen
    Ryu, Gyeong Hee
    Mkhize, Nhlakanipho
    Chen, Tongxin
    Lu, Yang
    Chen, Jun
    Lee, Ja Kyung
    Bhaskaran, Harish
    Warner, Jamie H.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (27) : 24279 - 24288