Phase-Engineered WS2 Monolayer Quantum Dots by Rhenium Doping

被引:4
|
作者
Lee, Hoon Ju [1 ,2 ]
Choe, Myeonggi [3 ,4 ]
Yang, Weiguang [1 ]
Lee, Suk Woo [3 ,4 ]
Park, Young Jin [1 ]
Hwang, Hyuntae [2 ]
Chhowalla, Manish [5 ]
Lee, Zonghoon [3 ,4 ]
Shin, Hyeon Suk [1 ,2 ,6 ,7 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Dept Chem, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Energy Engn, Ulsan 44919, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, Inst Basic Sci, Ctr Multidimens Carbon Mat, Ulsan 44919, South Korea
[4] Ulsan Natl Inst Sci & Technol UNIST, Dept Mat Sci & Engn, Ulsan 44919, South Korea
[5] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[6] Ulsan Natl Inst Sci & Technol UNIST, Ctr Multidimens Carbon Mat, Dept Energy Engn, Ulsan 44919, South Korea
[7] Ulsan Natl Inst Sci & Technol UNIST, Low Dimens Carbon Mat Ctr, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
transition metal dichalcogenide; tungsten disulfide; phase transition; quantumdot; doping; hydrogen evolution reaction; colloidal method; CHEMICAL-VAPOR-DEPOSITION; METAL DICHALCOGENIDES; MOS2; NANOSHEETS; TRANSITION; RES2; PHOTOLUMINESCENCE; SIZE;
D O I
10.1021/acsnano.3c11086
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal dichalcogenides (TMDs) occur in the thermodynamically stable trigonal prismatic (2H) phase or the metastable octahedral (1T) phase. Phase engineering of TMDs has proven to be a powerful tool for applications in energy storage devices as well as in electrocatalysis. However, the mechanism of the phase transition in TMDs and the synthesis of phase-controlled TMDs remain challenging. Here we report the synthesis of Re-doped WS2 monolayer quantum dots (MQDs) using a simple colloidal chemical process. We find that the incorporation of a small amount of electron-rich Re atoms in WS2 changes the metal-metal distance in the 2H phase initially, which introduces strain in the structure (strained 2H (S2H) phase). Increasing the concentration of Re atoms sequentially transforms the S2H phase into the 1T and 1T ' phases to release the strain. In addition, we performed controlled experiments by doping MoS2 with Re to distinguish between Re and Mo atoms in scanning transmission electron microscopy images and quantified the concentration range of Re atoms in each phase of MoS2, indicating that phase engineering of WS2 or MoS2 is possible by doping with different amounts of Re atoms. We demonstrate that the 1T ' WS2 MQDs with 49 at. % Re show superior catalytic performance (a low Tafel slope of 44 mV/dec, a low overpotential of 158 mV at a current density of 10 mA/cm(2), and long-term durability up to 5000 cycles) for the hydrogen evolution reaction. Our findings provide understanding and control of the phase transitions in TMDs, which will allow for the efficient manufacturing and translation of phase-engineered TMDs.
引用
收藏
页码:25731 / 25738
页数:8
相关论文
共 50 条
  • [11] Emission enhancement and exciton species modulation in monolayer WS2 via decoration of CdTe quantum dots
    Luo, Yuan
    Liu, Jun
    Zhong, Xuying
    Dou, Wei
    Tang, Dongsheng
    Zhou, Yangbo
    Zeng, Ruosheng
    Zhou, Weichang
    APPLIED PHYSICS LETTERS, 2022, 120 (26)
  • [12] Observation of quantum-confined exciton states in monolayer WS2 quantum dots by ultrafast spectroscopy
    Zheng, Shu-Wen
    Wang, Lei
    Wang, Hai-Yu
    Xu, Chen-Yu
    Luo, Yang
    Sun, Hong-Bo
    NANOSCALE, 2021, 13 (40) : 17093 - 17100
  • [13] Directed Energy Transfer from Monolayer WS2 to Near-Infrared Emitting PbS-CdS Quantum Dots
    Tanoh, Arelo O. A.
    Gauriot, Nicolas
    Delport, Geraud
    Xiao, James
    Pandya, Raj
    Sung, Jooyoung
    Allardice, Jesse
    Li, Zhaojun
    Williams, Cyan A.
    Baldwin, Alan
    Stranks, Samuel D.
    Rao, Akshay
    ACS NANO, 2020, 14 (11) : 15374 - 15384
  • [14] Efficient doping modulation of monolayer WS2 for optoelectronic applications
    马新莉
    张荣杰
    安春华
    吴森
    胡晓东
    刘晶
    Chinese Physics B, 2019, (03) : 48 - 53
  • [15] Disentangling the effects of doping, strain and disorder in monolayer WS2 by optical spectroscopy
    Kolesnichenko, Pavel V.
    Zhang, Qianhui
    Yun, Tinghe
    Zheng, Changxi
    Fuhrer, Michael S.
    Davis, Jeffrey A.
    2D MATERIALS, 2020, 7 (02):
  • [16] Suppression of substrate-induced charge doping in hBN-encapsulated monolayer WS2
    Lee, Taegeon
    Lee, Kyoung-Yeon
    Lee, Young-Jun
    Cho, Chang-Hee
    Rho, Heesuk
    CURRENT APPLIED PHYSICS, 2023, 49 : 115 - 119
  • [17] Ferroelectric Modulation of Quantum Emitters in Monolayer WS2
    Lee, Sung-Joon
    Chuang, Hsun-Jen
    Yeats, Andrew L.
    McCreary, Kathleen M.
    O'Hara, Dante J.
    Jonker, Berend T.
    ACS NANO, 2024, 18 (36) : 25349 - 25358
  • [18] Studies on chemical charge doping related optical properties in monolayer WS2
    Rivera, Adriana M.
    Gaur, Anand P. S.
    Sahoo, Satyaprakash
    Katiyar, Ram S.
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (10)
  • [19] Monolayer WS2 Nanosheets Passivated with HfO2 for Enhanced Photodetectors
    Yuan, Jintao
    Zhou, Shangtong
    Xiao, Bohan
    Bao, Lingjie
    Ai, Zikang
    Shen, Yuheng
    Ran, Guang
    Cheng, Qijin
    ACS APPLIED NANO MATERIALS, 2023, 6 (06) : 4594 - 4601
  • [20] Manipulating Transfer and Separation of Photocarriers in Monolayer WS2 via CdSe Quantum Dot Doping
    Feng, Qiushi
    Li, Yuanzheng
    Gao, Fei
    Sun, Ying
    Yan, Jiaxu
    Liu, Weizhen
    Xu, Haiyang
    Liu, Yichun
    ACS PHOTONICS, 2020, 7 (07): : 1857 - 1865