Tin antimony alloy based reduced graphene oxide composite for fast charging sodium-ion batteries

被引:16
作者
Sohan, Arya [3 ]
Kumar, Amar [2 ]
Narayanan, Tharangattu N. [2 ]
Kollu, Pratap [1 ]
机构
[1] Univ Hyderabad, Ctr Adv Studies Elect Sci & Technol, Sch Phys, Prof CR Rao Rd,Gachibowli, Hyderabad 500046, India
[2] Tata Inst Fundamental Res Hyderabad, Sy 36-P Serilingampally Mandal, Hyderabad 500046, India
[3] Univ Hyderabad, Sch Phys, Prof CR Rao Rd,Gachibowli, Hyderabad 500046, Telangana, India
关键词
Alloy anodes; Graphene oxide (GO); Fast charging; Reduced graphene oxide (rGO); LITHIUM-ION; ANODE MATERIALS; HIGH-CAPACITY; ELECTRODE MATERIALS; LONG-LIFE; LOW-COST; NA; SB; SNSB; NANOFIBERS;
D O I
10.1016/j.est.2023.109312
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tin antimony alloy anchored reduced graphene oxide (rGO-SnxSby (x similar to y = 1)) composite, prepared in bulk via a facile chemical route, is shown for its applicability in high current density (500 mAg(-1)) charging/discharging sodium battery application. The composite electrode delivered similar to 320 mAhg (1) capacity in>300 cycles with Sodium as the other electrode. This electrode material retains similar to 300 mAhg(-1) specific capacity at a 500 mAg(-1) specific current density even after 2.5 Ag(-1)charge-discharge rates, indicating its potential in fast charge-discharge energy storage applications. The systematic study conducted here indicates that synergistic effects from the alloy particles and the rGO conductive matrix are leading to this observed phenomenon. The development of such viable anode materials can play a pivotal role in the commercialisation of sodium ion secondary batteries, one of the potential systems for future energy storage applications.
引用
收藏
页数:10
相关论文
共 77 条
[1]   The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model [J].
Ain, Qura Tul ;
Haq, Samina Hyder ;
Alshammari, Abeer ;
Al-Mutlaq, Moudhi Abdullah ;
Anjum, Muhammad Naeem .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2019, 10 :901-911
[2]   The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mossbauer spectroscopies [J].
Baggetto, Loic ;
Hah, Hien-Yoong ;
Jumas, Jean-Claude ;
Johnson, Charles E. ;
Johnson, Jacqueline A. ;
Keum, Jong K. ;
Bridges, Craig A. ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2014, 267 :329-336
[3]   Hard Carbon Originated from Polyvinyl Chloride Nanofibers As High-Performance Anode Material for Na-Ion Battery [J].
Bai, Ying ;
Wang, Zhen ;
Wu, Chuan ;
Xu, Rui ;
Wu, Feng ;
Liu, Yuanchang ;
Li, Hui ;
Li, Yu ;
Lu, Jun ;
Amine, Khalil .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) :5598-5604
[4]   A review of carbon materials and their composites with alloy metals for sodium ion battery anodes [J].
Balogun, Muhammad-Sadeeq ;
Luo, Yang ;
Qiu, Weitao ;
Liu, Peng ;
Tong, Yexiang .
CARBON, 2016, 98 :162-178
[5]   Sodium Batteries: A Review on Sodium-Sulfur and Sodium-Air Batteries [J].
Chawla, Neha ;
Safa, Meer .
ELECTRONICS, 2019, 8 (10)
[6]   From Li-Ion Batteries toward Na-Ion Chemistries: Challenges and Opportunities [J].
Chayambuka, Kudakwashe ;
Mulder, Grietus ;
Danilov, Dmitri L. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2020, 10 (38)
[7]   Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries [J].
Chen, Chen ;
Fu, Kun ;
Lu, Yao ;
Zhu, Jiadeng ;
Xue, Leigang ;
Hu, Yi ;
Zhang, Xiangwu .
RSC ADVANCES, 2015, 5 (39) :30793-30800
[8]   Interfacial Bonding of SnSb Alloys with Graphene toward Ultrafast and Cycle-Stable Na-Ion Battery Anodes [J].
Cheng, Deliang ;
Wei, Ankai ;
Ye, Leyi ;
Xu, Guodong ;
Tan, Liang ;
Lu, Bin ;
Chen, Yiwang .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (37) :12177-12187
[9]   Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism [J].
Darwiche, Ali ;
Marino, Cyril ;
Sougrati, Moulay T. ;
Fraisse, Bernard ;
Stievano, Lorenzo ;
Monconduit, Laure .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) :20805-20811
[10]   STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES [J].
DELMAS, C ;
FOUASSIER, C ;
HAGENMULLER, P .
PHYSICA B & C, 1980, 99 (1-4) :81-85