A regularized MM estimate for interval-valued regression

被引:3
|
作者
Kong, Lingtao [1 ]
Gao, Xianwei [1 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval-valued data; Outliers; MM estimate; Regularized parameter; Interval crossing; LINEAR-REGRESSION; ROBUST REGRESSION; MODELS; SERIES; ALGORITHM;
D O I
10.1016/j.eswa.2023.122044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In real life, we usually encounter with interval-valued data when analyzing imprecise data or massive data sets. In this paper, a regularized interval MM estimate (RIMME) for interval-valued regression is proposed. In order to mitigate the mathematical incoherence of the predicted intervals, a regularized term is introduced to penalize the number of crossing intervals. Therefore, the proposed method can achieve a good balance between the prediction accuracy and mathematical coherence of the predicted intervals. To evaluate the performance of RIMME, a simulation study and three real data sets are examined. Experimental results illustrate that our method outperforms five commonly used methods in almost all cases.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] On the limit identification region for regression parameters in linear regression with interval-valued dependent variable
    Cerny, Michal
    Rada, Miroslav
    Sokol, Ondrej
    Holy, Vladimir
    MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 102 - 107
  • [32] A Linear Regression Model for Interval-Valued Response Based on Set Arithmetic
    Blanco-Fernandez, Angela
    Colubi, Ana
    Garcia-Barzana, Marta
    Montenegro, Manuel
    SYNERGIES OF SOFT COMPUTING AND STATISTICS FOR INTELLIGENT DATA ANALYSIS, 2013, 190 : 105 - 113
  • [33] Fitting a Least Absolute Deviation Regression Model on Interval-Valued Data
    Santiago Maia, Andre Luis
    de Carvalho, Francisco de A. T.
    ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2008, PROCEEDINGS, 2008, 5249 : 207 - 216
  • [34] Inferential studies for a flexible linear regression model for interval-valued variables
    Blanco-Fernandez, A.
    Gonzalez-Rodriguez, G.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (04) : 658 - 675
  • [35] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chuang, Chen-Chia
    Jeng, Jin-Tsong
    Lin, Wei-Yang
    Hsiao, Chih-Ching
    Tao, Chin-Wang
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (03) : 891 - 900
  • [36] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chen-Chia Chuang
    Jin-Tsong Jeng
    Wei-Yang Lin
    Chih-Ching Hsiao
    Chin-Wang Tao
    International Journal of Fuzzy Systems, 2020, 22 : 891 - 900
  • [37] Nonparametric regression for interval-valued data based on local linear smoothing approach
    Kong, Lingtao
    Song, Xiangjun
    Wang, Xiaomin
    NEUROCOMPUTING, 2022, 501 : 834 - 843
  • [38] Robust regression for interval-valued data based on midpoints and log-ranges
    Qing Zhao
    Huiwen Wang
    Shanshan Wang
    Advances in Data Analysis and Classification, 2023, 17 : 583 - 621
  • [39] A Pattern Classifier for Interval-valued Data Based on Multinomial Logistic Regression Model
    de Barros, Alberto Pereira
    Tenorio de Carvalho, Francisco de Assis
    Lima Neto, Eufrasio de Andrade
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 541 - 546
  • [40] An exponential-type kernel robust regression model for interval-valued variables
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    INFORMATION SCIENCES, 2018, 454 : 419 - 442