From the asymmetric simple exclusion processes to the stationary measures of the KPZ fixed point on an interval

被引:5
作者
Bryc, Wlodek [1 ]
Wang, Yizao [1 ]
Wesolowski, Jacek [2 ]
机构
[1] Univ Cincinnati, Dept Math Sci, 2815 Commons Way, Cincinnati, OH 45221 USA
[2] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 04期
关键词
Asymmetric simple exclusion process; Scaling limit; KPZ fixed point on an interval; POLYNOMIALS; ASEP;
D O I
10.1214/22-AIHP1315
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Barraquand and Le Doussal (Europhys. Lett. 137 (2022) 61003) introduced a family of stationary measures for the (conjectural) KPZ fixed point on an interval with Neumann boundary conditions, and predicted that they arise as scaling limits of stationary measures of all models in the KPZ universality class on an interval. In this paper, we show that the stationary measures for KPZ fixed point on an interval arise as the scaling limits of the height increment processes for the open asymmetric simple exclusion process in the steady state, with parameters changing appropriately as the size of the system tends to infinity.
引用
收藏
页码:2257 / 2284
页数:28
相关论文
共 32 条
[1]  
ASKEY R, 1985, MEM AM MATH SOC, V54, P1
[2]   Steady state of the KPZ equation on an interval and Liouville quantum mechanics [J].
Barraquand, Guillaume ;
Le Doussal, Pierre .
EPL, 2022, 137 (06)
[3]  
Billingsley P, 1999, CONVERGE PROBAB MEAS, DOI 10.1002/9780470316962
[4]   Markov limits of steady states of the KPZ equation on an interval [J].
Bryc, Wlodek ;
Kuznetsov, Alexey .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 (02) :1329-1351
[5]   Markov processes related to the stationary measure for the open KPZ equation [J].
Bryc, Wlodek ;
Kuznetsov, Alexey ;
Wang, Yizao ;
Wesolowski, Jacek .
PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (1-2) :353-389
[6]   ASKEY-WILSON POLYNOMIALS, QUADRATIC HARNESSES AND MARTINGALES [J].
Bryc, Wlodek ;
Wesolowski, Jacek .
ANNALS OF PROBABILITY, 2010, 38 (03) :1221-1262
[7]   On Matrix Product Ansatz for Asymmetric Simple Exclusion Process with Open Boundary in the Singular Case [J].
Bryc, Wlodzimierz ;
Swieca, Marcin .
JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (02) :252-284
[8]   Limit fluctuations for density of asymmetric simple exclusion processes with open boundaries [J].
Bryc, Wlodzimierz ;
Wang, Yizao .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04) :2169-2194
[9]   Dual representations of Laplace transforms of Brownian excursion and generalized meanders [J].
Bryc, Wlodzimierz ;
Wang, Yizao .
STATISTICS & PROBABILITY LETTERS, 2018, 140 :77-83
[10]  
Bryc W, 2016, PROBAB MATH STAT-POL, V36, P335