Asymptotic Justification of Equations for von Karman Membrane Shells

被引:1
作者
Legougui, M. [1 ]
Ghezal, A. [1 ]
机构
[1] Univ Kasdi Merbah, Lab Math Appl, B P 511, Ouargla 30000, Algeria
关键词
asymptotic analysis; nonlinear elasticity; shell theory; von Karman boundary conditions; EXISTENCE THEOREM; NONLINEAR ELASTICITY; DYNAMICAL EQUATIONS; MODELS; DERIVATION;
D O I
10.1134/S0001434623090237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The objective of this work is to study the asymptotic justification of the two- dimensional equations for membrane shells with boundary conditions of von Karman's type. More precisely, we consider a three-dimensional model for a nonlinearly elastic membrane shell of Saint Venant-Kirchhoff material, where only a portion of the lateral face is subjected to boundary conditions of von Karman's type. Using technics from formal asymptotic analysis with the thickness of the shell as a small parameter, we show that the scaled three-dimensional solution still leads to the so-called two-dimensional equations of von Karman membrane shell.
引用
收藏
页码:536 / 552
页数:17
相关论文
共 34 条
[1]   Some open problems in elasticity [J].
Ball, JM .
GEOMETRY, MECHANICS AND DYNAMICS: VOLUME IN HONOR OF THE 60TH BIRTHDAY OF J. E. MARSDEN, 2002, :3-59
[2]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[3]  
Banica G. A., 1999, Asymptotic Analysis, V19, P35
[4]   Asymptotic modeling of Signorini problem with Coulomb friction for a linearly elastostatic shallow shell [J].
Bensayah, Abdallah ;
Chacha, Djamel Ahmed ;
Ghezal, Abderrezak .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (06) :1410-1424
[5]   Existence Theorem for a Nonlinear Elliptic Shell Model [J].
Bunoiu R. ;
Ciarlet P.G. ;
Mardare C. .
Journal of Elliptic and Parabolic Equations, 2015, 1 (1) :31-48
[6]   Existence Result for a Dynamical Equations of Generalized Marguerre-von Karman Shallow Shells [J].
Chacha, D. A. ;
Ghezal, A. ;
Bensayah, A. .
JOURNAL OF ELASTICITY, 2013, 111 (02) :265-283
[7]  
Ciarlet P., 1988, 3 DIMENSIONAL ELASTI
[8]  
Ciarlet P. G., 1999, Theory of Shells
[9]  
Ciarlet P. G., 1997, Theory of Plates
[10]  
Ciarlet P. G., 1986, Comput. Mech, V1, P177, DOI [10.1007/BF00272623, DOI 10.1007/BF00272623]