AN ANISOTROPIC INVERSE MEAN CURVATURE FLOW FOR SPACELIKE GRAPHIC HYPERSURFACES WITH BOUNDARY IN LORENTZ-MINKOWSKI SPACE Rn+11

被引:1
作者
Gao, Ya [1 ]
Mao, Jing [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Key Lab Appl Math Hubei Prov, Wuhan 430062, Peoples R China
关键词
Anisotropic inverse mean curvature flow; spacelike hypersurfaces; Lorentz-Minkowski space; Neumann boundary condition;
D O I
10.2748/tmj.20220203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the evolution of spacelike graphic hypersurfaces defined over a convex piece of hyperbolic plane H-n(1), of center at origin and radius 1, in the (n + 1)-dimensional Lorentz-Minkowski space R-1(n+1) along an anisotropic inverse mean curvature flow with the vanishing Neumann boundary condition, and prove that this flow exists for all the time. Moreover, we can show that, after suitable rescaling, the evolving spacelike graphic hypersurfaces converge smoothly to a piece of hyperbolic plane of center at origin and prescribed radius, which actually corresponds to a constant function defined over the piece of H-n (1) , as time tends to infinity. Clearly, this conclusion is an extension of our previous work [2].
引用
收藏
页码:347 / 364
页数:18
相关论文
共 15 条
[1]  
ECKER K., 1992, Regularity Theory for Mean Curvature Flow
[2]  
GAO Y., arXiv
[3]  
[高雅 Gao Ya], 2023, [中国科学. 数学, Scientia Sinica Mathematica], V53, P993
[4]  
Gao Y, 2021, Arxiv, DOI arXiv:2109.02191
[5]  
Gao Y, 2021, Arxiv, DOI arXiv:2101.05447
[6]  
Gao Y, 2021, Arxiv, DOI arXiv:2104.10600
[7]  
GERHARDT C, 1990, J DIFFER GEOM, V32, P299
[8]  
Gerhardt C., 2006, Series in Geometry and topology, V39
[9]  
Ladyzenskaja V.A., 1968, LINEAR QUASILINEAR E
[10]  
Lieberman G. M., 1996, Second Order Parabolic Differential Equations