Complex dynamics of the system of nonlinear difference equations in the Hilbert space

被引:0
作者
Pokutnyi, Oleksandr [1 ]
机构
[1] Natl Acad Sci, Inst Math, 3 Tereschenkivska St, UA-01024 Kiev, Ukraine
基金
新加坡国家研究基金会;
关键词
Lotka-Volterra models; population dynamics; Moore-Penrose pseudo-inverse operators; Fibonacci numbers; LOTKA-VOLTERRA SYSTEM; DISCRETIZATION; MODEL;
D O I
10.14232/ejqtde.2023.1.44
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the given article the necessary and sufficient conditions of the existence of solutions of boundary value problem for the nonlinear system in the Hilbert spaces are obtained. Examples of such systems like a Lotka-Volterra are considered. Bifurcation and branching conditions of solutions are obtained.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
[41]   HIGH-ORDER FINITE DIFFERENCE SOLUTION OF EULER EQUATIONS FOR NONLINEAR WATER WAVES [J].
Christiansen, Torben B. ;
Bingham, Harry B. ;
Engsig-Karup, Allan P. .
PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2012, VOL 4, 2012, :519-528
[42]   Dynamics of high-order solitons in the nonlocal nonlinear Schrodinger equations [J].
Yang, Bo ;
Chen, Yong .
NONLINEAR DYNAMICS, 2018, 94 (01) :489-502
[43]   Gibbs Dynamics for Fractional Nonlinear Schrödinger Equations with Weak Dispersion [J].
Liang, Rui ;
Wang, Yuzhao .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (10)
[44]   Difference schemes stabilized by discrete mollification for degenerate parabolic equations in two space dimensions [J].
Acosta, Carlos D. ;
Buerger, Raimund .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) :1509-1540
[45]   A finite difference scheme for semilinear space-fractional diffusion equations with time delay [J].
Hao, Zhaopeng ;
Fan, Kai ;
Cao, Wanrong ;
Sun, Zhizhong .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 :238-254
[46]   Nonlinear dynamics of complex hysteretic systems: Oscillator in a magnetic field [J].
Radons, G. ;
Zienert, A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (07) :1675-1684
[47]   Nonlinear dynamics and chaos methods in neurodynamics and complex data analysis [J].
Ivancevic, Tijana ;
Jain, Lakhmi ;
Pattison, John ;
Hariz, Alex .
NONLINEAR DYNAMICS, 2009, 56 (1-2) :23-44
[48]   Nonstandard finite difference method for solving complex-order fractional Burgers' equations [J].
Sweilam, N. H. ;
AL-Mekhlafi, S. M. ;
Baleanu, D. .
JOURNAL OF ADVANCED RESEARCH, 2020, 25 :19-29
[49]   Dynamics of a nonstandard finite-difference scheme for delay differential equations with unimodal feedback [J].
Wang, Yuanyuan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (10) :3967-3978
[50]   Nonlinear optical dynamics in Heisenberg space: Directional curves and recursive inquiry [J].
Korpinar, Talat ;
Demirkol, Ridvan Cem .
MODERN PHYSICS LETTERS B, 2024, 38 (31)