Quadratic points on intersections of two quadrics

被引:2
|
作者
Creutz, Brendan [1 ]
Viray, Bianca [2 ]
机构
[1] Univ Canterbury, Sch Math & Stat, Christchurch, New Zealand
[2] Univ Washington, Dept Math, Seattle, WA USA
关键词
rational points; intersections of quadrics; Brauer-Manin obstruction; DEL-PEZZO SURFACES; WEAK APPROXIMATION; HASSE PRINCIPLE; HOMOGENEOUS SPACES; BRAUER; PAIRS;
D O I
10.2140/ant.2023.17.1411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a smooth complete intersection of two quadrics of dimension at least 2 over a number field has index dividing 2, i.e., that it possesses a rational 0-cycle of degree 2.
引用
收藏
页码:1411 / 1452
页数:43
相关论文
共 44 条
  • [1] Rational points on singular intersections of quadrics
    Browning, T. D.
    Munshi, R.
    COMPOSITIO MATHEMATICA, 2013, 149 (09) : 1457 - 1494
  • [2] Intersections of two quadrics and pencils of curves of genus 1 General introduction
    Wittenberg, Olivier
    INTERSECTIONS DE DEUX QUADRIQUES ET PINCEAUX DE COURBES DE GENRE 1, 2007, 1901 : 1 - +
  • [3] Return to the arithmetic of the intersections of two quadrics
    Colliot-Thelene, Jean-Louis
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (806): : 147 - 185
  • [4] Singular Intersections of Quadrics I
    Lopez de Medrano, Santiago
    SINGULARITIES IN GEOMETRY, TOPOLOGY, FOLIATIONS AND DYNAMICS: A CELEBRATION OF THE 60TH BIRTHDAY OF JOSE SEADE, 2017, : 155 - 170
  • [5] Topology of the intersections of quadrics II
    Vinicio Gómez Gutiérrez
    Santiago López de Medrano
    Boletín de la Sociedad Matemática Mexicana, 2014, 20 (2) : 237 - 255
  • [6] Topology of the intersections of quadrics II
    Gomez Gutierrez, Vinicio
    Lopez de Medrano, Santiago
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2014, 20 (02): : 237 - 255
  • [7] Rational points on the intersection of three quadrics
    Heath-Brown, D. R.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (02) : 273 - 289
  • [8] Derived categories of quadric fibrations and intersections of quadrics
    Kuznetsov, Alexander
    ADVANCES IN MATHEMATICS, 2008, 218 (05) : 1340 - 1369
  • [9] Cyclic polytopes, oriented matroids and intersections of quadrics
    Gómez-Gutiérrez V.
    Boletín de la Sociedad Matemática Mexicana, 2017, 23 (1) : 87 - 118
  • [10] Rational points on pencils of conics and quadrics with many degenerate fibres
    Browning, T. D.
    Matthiesen, L.
    Skorobogatov, A. N.
    ANNALS OF MATHEMATICS, 2014, 180 (01) : 381 - 402