Quasi-Whittaker modules for the n-th Schrödinger algebra

被引:0
|
作者
Chen, Zhengxin [1 ]
Wang, Yu [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-Whittaker modules; n-th Schrodinger algebras; Locally finite modules; Simple modules; LIE-ALGEBRA; LOCALLY FINITE; WEIGHT MODULES; SCHRODINGER; REPRESENTATIONS; CLASSIFICATION;
D O I
10.1016/j.laa.2023.07.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The n-th Schrodinger algebra schn defined in [14] is the semidirect product of the Lie algebra sl2 with the n-th Heisenberg Lie algebra hn, which generalizes the Schrodinger algebra sl2 x h1. Let & phi; : hn & RARR; C be a nonzero Lie algebra homomorphism. A schn-module V is called quasi-Whittaker of type & phi; if V = U(schn)v, where U(schn) is the universal enveloping algebra of schn, v is a nonzero vector such that xv = & phi;(x)v for any x & ISIN; hn. In this paper, we prove that a simple schn-module Vis a quasi-Whittaker module if and only if V is a locally finite hnmodule. Then we classify the simple quasi-Whittaker modules of & phi;, according to the rank of & phi;. Furthermore, we characterize arbitrary quasi-Whittaker modules through the rank of & phi;. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 29 条
  • [1] The category of quasi-Whittaker modules over the Schrödinger algebra
    Ji, Zhongping
    Liu, Genqiang
    Zhao, Yueqiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 708 : 1 - 11
  • [2] Whittaker modules and quasi-Whittaker modules for the Schr?dinger algebra in (2+1)-dimensional spacetime
    Cai, Yan-an
    Liu, Zedong
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186
  • [3] Quasi-Whittaker modules for the Schrodinger algebra
    Cai, Yan-an
    Cheng, Yongsheng
    Shen, Ran
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 463 : 16 - 32
  • [4] Whittaker modules and quasi-Whittaker modules for the Euclidean Lie algebra e(3)
    Cai, Yan-an
    Shen, Ran
    Zhang, Jiangang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (04) : 1419 - 1433
  • [5] Simple Singular Whittaker Modules Over the Schrödinger Algebra
    Yan-an Cai
    Xiufu Zhang
    Communications in Mathematics and Statistics, 2019, 7 : 475 - 483
  • [6] Quasi-Whittaker modules over the conformal Galilei algebras
    Cai, Yan-an
    Chen, Qiufan
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (02): : 313 - 324
  • [7] On simple modules of the n-th Schrodinger algebra
    Tao, W-Q
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (05)
  • [8] n-th Schr?dinger代数的Hom-李代数结构
    王玉
    陈正新
    数学学报(中文版), 2024, 67 (01) : 97 - 104
  • [9] Non-weight modules over the super Schrödinger algebra
    Wang, Xinyue
    Chen, Liangyun
    Ma, Yao
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (03) : 647 - 664
  • [10] Whittaker modules for a subalgebra of N=2 superconformal algebra
    Jing, Naihuan
    Xu, Pengfa
    Zhang, Honglian
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (10) : 4161 - 4179