Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma

被引:12
作者
Wei, Jingwei [1 ,2 ]
Jiang, Hanyu [3 ]
Zhou, Yu [1 ,2 ,4 ]
Tian, Jie [1 ,2 ,5 ,6 ]
Furtado, Felipe S. [7 ,8 ]
Catalano, Onofrio A. [7 ,8 ]
机构
[1] Chinese Acad Sci, Inst Automation, Key Lab Mol Imaging, Beijing 100190, Peoples R China
[2] Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
[3] Sichuan Univ, West China Hosp, Dept Radiol, Chengdu 610041, Sichuan, Peoples R China
[4] Xidian Univ, Sch Life Sci & Technol, Xian, Peoples R China
[5] Beihang Univ, Sch Med, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R China
[6] Xidian Univ, Sch Life Sci & Technol, Minist Educ, Engn Res Ctr Mol & Neuro Imaging, Xian 710126, Shaanxi, Peoples R China
[7] Massachusetts Gen Hosp, Dept Radiol, 55 Fruit St,White 270, Boston, MA 02114 USA
[8] Harvard Med Sch, 25 Shattuck St, Boston, MA 02115 USA
基金
中国国家自然科学基金;
关键词
Radiomics; Artificial intelligence; Hepatocellular carcinoma; Precision medicine; Radiological technology; CT-BASED RADIOMICS; CONTRAST-ENHANCED CT; TRANSCATHETER ARTERIAL CHEMOEMBOLIZATION; CONVOLUTIONAL NEURAL-NETWORK; MICROVASCULAR INVASION; PREOPERATIVE PREDICTION; COMPUTED-TOMOGRAPHY; MACROVASCULAR INVASION; TRANSARTERIAL CHEMOEMBOLIZATION; RADIOFREQUENCY ABLATION;
D O I
10.1016/j.dld.2022.12.015
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making. & COPY; 2022 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:833 / 847
页数:15
相关论文
共 281 条
[1]   Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest [J].
Akai, H. ;
Yasaka, K. ;
Kunimatsu, A. ;
Nojima, M. ;
Kokudo, T. ;
Kokudo, N. ;
Hasegawa, K. ;
Abe, O. ;
Ohtomo, K. ;
Kiryu, S. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2018, 99 (10) :643-651
[2]   Assessment of Ablative Margin After Microwave Ablation for Hepatocellular Carcinoma Using Deep Learning-Based Deformable Image Registration [J].
An, Chao ;
Jiang, Yiquan ;
Huang, Zhimei ;
Gu, Yangkui ;
Zhang, Tianqi ;
Ma, Ling ;
Huang, Jinhua .
FRONTIERS IN ONCOLOGY, 2020, 10
[3]   Comparison of MRI-based response criteria and radiomics for the prediction of early response to transarterial radioembolization in patients with hepatocellular carcinoma [J].
Aujay, Godefroy ;
Etchegaray, Christele ;
Blanc, Jean -Frederic ;
Lapuyade, Bruno ;
Papadopoulos, Panteleimon ;
Pey, Marie-Anaig ;
Bordenave, Laurence ;
Trillauda, Herve ;
Saut, Olivier ;
Pinaquy, Jean -Baptiste .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2022, 103 (7-8) :360-366
[4]   GoogLeNet-Based Ensemble FCNet Classifier for Focal Liver Lesion Diagnosis [J].
Balagourouchetty, Lakshmipriya ;
Pragatheeswaran, Jayanthi K. ;
Pottakkat, Biju ;
Ramkumar, G. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (06) :1686-1694
[5]   Radiofrequency ablation of hepatocellular carcinoma: CT texture analysis of the ablated area to predict local recurrence [J].
Beleu, Alessandro ;
Autelitano, Daniele ;
Geraci, Luca ;
Aluffi, Gregorio ;
Cardobi, Nicolo ;
De Robertis, Riccardo ;
Martone, Enrico ;
Conci, Simone ;
Ruzzenente, Andrea ;
D'Onofrio, Mirko .
EUROPEAN JOURNAL OF RADIOLOGY, 2022, 150
[6]   Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning [J].
Bousabarah, Khaled ;
Letzen, Brian ;
Tefera, Jonathan ;
Savic, Lynn ;
Schobert, Isabel ;
Schlachter, Todd ;
Staib, Lawrence H. ;
Kocher, Martin ;
Chapiro, Julius ;
Lin, MingDe .
ABDOMINAL RADIOLOGY, 2021, 46 (01) :216-225
[7]   MRI-Based Radiomic Features Help Identify Lesions and Predict Histopathological Grade of Hepatocellular Carcinoma [J].
Brancato, Valentina ;
Garbino, Nunzia ;
Salvatore, Marco ;
Cavaliere, Carlo .
DIAGNOSTICS, 2022, 12 (05)
[8]   Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images [J].
Brehar, Raluca ;
Mitrea, Delia-Alexandrina ;
Vancea, Flaviu ;
Marita, Tiberiu ;
Nedevschi, Sergiu ;
Lupsor-Platon, Monica ;
Rotaru, Magda ;
Badea, Radu Ioan .
SENSORS, 2020, 20 (11)
[9]   A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma [J].
Cai, Wei ;
He, Baochun ;
Hu, Min ;
Zhang, Wenyu ;
Xiao, Deqiang ;
Yu, Hao ;
Song, Qi ;
Xiang, Nan ;
Yang, Jian ;
He, Songshen ;
Huang, Yaohuan ;
Huang, Wenjie ;
Jia, Fucang ;
Fang, Chihua .
SURGICAL ONCOLOGY-OXFORD, 2019, 28 :78-85
[10]   Deep Neural Architectures for Contrast Enhanced Ultrasound (CEUS) Focal Liver Lesions Automated Diagnosis [J].
Caleanu, Catalin Daniel ;
Sirbu, Cristina Laura ;
Simion, Georgiana .
SENSORS, 2021, 21 (12)