Meta-Learning-Based Degradation Representation for Blind Super-Resolution

被引:18
作者
Xia, Bin [1 ]
Tian, Yapeng [2 ]
Zhang, Yulun [3 ]
Hang, Yucheng [1 ]
Yang, Wenming [1 ]
Liao, Qingmin [1 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Dept Elect Engn, Shenzhen 518055, Peoples R China
[2] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75080 USA
[3] Swiss Fed Inst Technol, Comp Vis Lab, CH-8092 Zurich, Switzerland
关键词
Blind super-resolution; meta-learning; knowledge distillation; implicit degradation representation;
D O I
10.1109/TIP.2023.3283922
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Blind image super-resolution (blind SR) aims to generate high-resolution (HR) images from low-resolution (LR) input images with unknown degradations. To enhance the performance of SR, the majority of blind SR methods introduce an explicit degradation estimator, which helps the SR model adjust to unknown degradation scenarios. Unfortunately, it is impractical to provide concrete labels for the multiple combinations of degradations (e. g., blurring, noise, or JPEG compression) to guide the training of the degradation estimator. Moreover, the special designs for certain degradations hinder the models from being generalized for dealing with other degradations. Thus, it is imperative to devise an implicit degradation estimator that can extract discriminative degradation representations for all types of degradations without requiring the supervision of degradation ground-truth. To this end, we propose a Meta-Learning based Region Degradation Aware SR Network (MRDA), including Meta-Learning Network (MLN), Degradation Extraction Network (DEN), and Region Degradation Aware SR Network (RDAN). To handle the lack of ground-truth degradation, we use the MLN to rapidly adapt to the specific complex degradation after several iterations and extract implicit degradation information. Subsequently, a teacher network MRDA(T) is designed to further utilize the degradation information extracted by MLN for SR. However, MLN requires iterating on paired LR and HR images, which is unavailable in the inference phase. Therefore, we adopt knowledge distillation (KD) to make the student network learn to directly extract the same implicit degradation representation (IDR) as the teacher from LR images. Furthermore, we introduce an RDAN module that is capable of discerning regional degradations, allowing IDR to adaptively influence various texture patterns. Extensive experiments under classic and real-world degradation settings show that MRDA achieves SOTA performance and can generalize to various degradation processes.
引用
收藏
页码:3383 / 3396
页数:14
相关论文
共 64 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]   Variational Information Distillation for Knowledge Transfer [J].
Ahn, Sungsoo ;
Hu, Shell Xu ;
Damianou, Andreas ;
Lawrence, Neil D. ;
Dai, Zhenwen .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9155-9163
[3]  
Antoniou A, 2019, Arxiv, DOI arXiv:1810.09502
[4]  
Bell-Kligler S, 2020, Arxiv, DOI arXiv:1909.06581
[5]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[6]   Toward Real-World Single Image Super-Resolution: A New Benchmark and A New Model [J].
Cai, Jianrui ;
Zeng, Hui ;
Yong, Hongwei ;
Cao, Zisheng ;
Zhang, Lei .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3086-3095
[7]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[8]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[9]   Soft-Edge Assisted Network for Single Image Super-Resolution [J].
Fang, Faming ;
Li, Juncheng ;
Zeng, Tieyong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) :4656-4668
[10]  
Finn C, 2018, Arxiv, DOI arXiv:1710.11622