Adjoint DSMC for nonlinear spatially-homogeneous Boltzmann equation with a general collision model

被引:2
作者
Yang, Yunan [1 ]
Silantyev, Denis [2 ]
Caflisch, Russel [3 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Studies, CH-8092 Zurich, Switzerland
[2] Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Boltzmann equation; Direct simulation Monte Carlo methods; DSMC; Optimization; Adjoint-state method; DIRECT SIMULATION;
D O I
10.1016/j.jcp.2023.112247
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We derive an adjoint method for the Direct Simulation Monte Carlo (DSMC) method for the spatially homogeneous Boltzmann equation with a general collision law. This generalizes our previous results in Caflisch et al. (2021) [9], which was restricted to the case of Maxwell molecules, for which the collision rate is constant. The main difficulty in generalizing the previous results is that a rejection sampling step is required in the DSMC algorithm in order to handle the variable collision rate. We find a new term corresponding to the so-called score function in the adjoint equation and a new adjoint Jacobian matrix capturing the dependence of the collision parameter on the velocities. The new formula works for a much more general class of collision models.& COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:23
相关论文
共 24 条
  • [1] Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives
    Albi, G.
    Bellomo, N.
    Fermo, L.
    Ha, S. -Y.
    Kim, J.
    Pareschi, L.
    Poyato, D.
    Soler, J.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (10) : 1901 - 2005
  • [2] Boltzmann-type control of opinion consensus through leaders
    Albi, G.
    Pareschi, L.
    Zanella, M.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2028):
  • [3] KINETIC DESCRIPTION OF OPTIMAL CONTROL PROBLEMS AND APPLICATIONS TO OPINION CONSENSUS
    Albi, Giacomo
    Herty, Michael
    Pareschi, Lorenzo
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (06) : 1407 - 1429
  • [4] A CONVERGENCE PROOF FOR NANBU SIMULATION METHOD FOR THE FULL BOLTZMANN-EQUATION
    BABOVSKY, H
    ILLNER, R
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) : 45 - 65
  • [5] Babovsky H., 1986, MATH METHODS APPL SC, V8, P223, DOI [DOI 10.1002/MMA.1670080114, 10.1002/mma.1670080114]
  • [6] An energy-transport model for semiconductors derived from the Boltzmann equation
    BenAbdallah, N
    Degond, P
    Genieys, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (1-2) : 205 - 231
  • [7] DIRECT SIMULATION AND BOLTZMANN EQUATION
    BIRD, GA
    [J]. PHYSICS OF FLUIDS, 1970, 13 (11) : 2676 - &
  • [8] Collective learning modeling based on the kinetic theory of active particles
    Burini, D.
    De Lillo, S.
    Gibelli, L.
    [J]. PHYSICS OF LIFE REVIEWS, 2016, 16 : 123 - 139
  • [9] Adjoint DSMC for nonlinear Boltzmann equation constrained optimization
    Caflisch, Russel
    Silantyev, Denis
    Yang, Yunan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 439
  • [10] On a kinetic model for a simple market economy
    Cordier, S
    Pareschi, L
    Toscani, G
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2005, 120 (1-2) : 253 - 277