Stability analysis in extensible thermoelastic beam with microtemperatures

被引:7
作者
Aouadi, Moncef [1 ]
机构
[1] Univ Carthage, Ecole Natl Ingenieurs Bizerte, UR Syst Dynam & Applicat, UR 17ES21, Bizerte 7035, Tunisia
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 03期
关键词
Extensible thermoelastic beam; Microtemperatures; Well-posedness; Exponential stability; Analyticity; BODIES; PLATE;
D O I
10.1007/s00033-023-01979-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we derive the equations that constitute the nonlinear mathematical model of one-dimensional extensible elastic beam with temperature and microtemperatures effects. The nonlinear governing equations are derived by applying the Hamilton principle to full von Karman equations in the framework of Euler-Bernoulli beam theory. The model takes account of the effects of extensiblity and rotational inertia where the dissipations are entirely contributed by temperature and microtemperatures. Based on semigroups theory, we establish existence and uniqueness of weak and strong solutions to the derived problem. Then, using the multiplier method, we show that the solutions decay exponentially if (4.1) holds. Finally we consider the case of zero thermal conductivity and we show that the dissipation given only by the microtemperatures is strong enough to produce exponential stability if (4.1) holds. By an approach based on the Gearhart-Herbst-Pruss-Huang theorem, we prove that the linear (without extensiblity) associated semigroup is not analytic.
引用
收藏
页数:25
相关论文
共 36 条
[1]   Long-time dynamics of an extensible plate equation with thermal memory [J].
Aguiar Barbosa, Alisson Rafael ;
Ma, To Fu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) :143-165
[2]   Exponential stability in Mindlin's Form II gradient thermoelasticity with microtemperatures of type III [J].
Aouadi, M. ;
Passarella, F. ;
Tibullo, V .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2241)
[3]  
Aouadi M., 2021, Z ANGEW MATH MECH, V101, P11, DOI [10.1002/zamm.202000346, DOI 10.1002/ZAMM.202000346]
[4]   Decay in full von Karman beam with temperature and microtemperatures effects [J].
Aouadi, Moncef ;
Guerine, Souad .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2023, 18
[6]   On the stability of porous-elastic system with microtemparatures [J].
Apalara, Tijani A. .
JOURNAL OF THERMAL STRESSES, 2019, 42 (02) :265-278
[7]  
Benabdallah A., 1998, ELECTRON J DIFFER EQ, V7, P1
[8]   Analysis of dynamic nonlinear thermoviscoelastic beam problems [J].
Berti, A. ;
Copetti, M. I. M. ;
Fernandez, J. R. ;
Naso, M. G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :774-795
[9]   A dynamic thermoviscoelastic contact problem with the second sound effect [J].
Berti, Alessia ;
Copetti, Maria I. M. ;
Fernandez, Jose R. ;
Naso, Maria Grazia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) :1163-1195
[10]  
Bochicchio I., 2009, COMMUN SIMAI C, DOI [10.1685/CSC09232, DOI 10.1685/CSC09232]