DL-SCA: An deep learning based approach for intra-class CutMix data augmentation

被引:3
|
作者
Liu, Weiguang [1 ]
机构
[1] Jiuzhou Polytech, Xuzhou 221116, Peoples R China
关键词
Side channel attacks; Deep learning; Data augmentation; CutMix; AES;
D O I
10.1016/j.phycom.2024.102288
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
CutMix data augmentation can provide a large amount of augmented data for DL-SCA (deep learning side channel attacks) by generating new power traces. However, traces generated by CutMix may lose dependency with the new label, which may reduce the accuracy of the training model. In light of this, we propose an improved intra-class CutMix data augmentation method. Firstly, the original power traces are classified by the label. Then, the original power traces are selected by the same label constraint to generate new power traces according to CutMix, which can ensure the dependency between the generated trace and its label. Furthermore, to maintain balance among different classified datasets, the traces are generated sequentially according to distinct labels. Finally, based on the augmented power traces, the MLP (Multilayer Perceptron) and CNN (Convolutional Neural Network) models can be constructed and trained to recover the key of AES. In order to verify the effectiveness of the proposed method, we conducted experimental evaluations using the MLP and CNN models based on DPA-contest v4 dataset and ASCAD dataset. The test results show that the generated traces based on the intra-class CutMix method can be very similar to the original power traces, and the MLP and CNN models can be effectively trained based on the generated traces to recover the key of AES. Compared with existing data augmentation methods, the proposed method can complete the key recovery with faster convergence and fewer power traces.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Molecular communication data augmentation and deep learning based detection
    Scazzoli, Davide
    Vakilipoor, Fardad
    Magarini, Maurizio
    NANO COMMUNICATION NETWORKS, 2024, 40
  • [32] Deep Learning based Data Augmentation for Restoring SAR Images
    Aghababaei, Hossein
    Ferraioli, Giampaolo
    Vitale, Sergio
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 822 - 824
  • [33] DATA AUGMENTATION FOR DISCHARGING TIME PREDICTION OF PARTICLE FLOW: A DEEP LEARNING AND STYLE TRANSFER APPROACH
    Wu, Mengqi
    Liu, Yang
    Li, Bin
    Zhang, Zhen
    Gui, Nan
    Tu, Jiyuan
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 6, ICONE31 2024, 2024,
  • [34] Deep-learning-based failure prediction with data augmentation in optical transport networks
    Cui, Lihua
    Zhao, Yongli
    Yan, Boyuan
    Liu, Dongmei
    Zhang, Jie
    17TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN2018), 2019, 11048
  • [35] A novel deep learning motivated data augmentation system based on defect segmentation requirements
    Niu, Shuanlong
    Peng, Yaru
    Li, Bin
    Qiu, Yuanhong
    Niu, Tongzhi
    Li, Weifeng
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (02) : 687 - 701
  • [36] Data Augmentation-based Novel Deep Learning Method for Deepfaked Images Detection
    Iqbal, Farkhund
    Abbasi, Ahmed
    Javed, Abdul rehman
    Almadhor, Ahmad
    Jalil, Zunera
    Anwar, Sajid
    Rida, Imad
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (11)
  • [37] Face Recognition via Deep Learning Using Data Augmentation Based on Orthogonal Experiments
    Pei, Zhao
    Xu, Hang
    Zhang, Yanning
    Guo, Min
    Yang, Yee-Hong
    ELECTRONICS, 2019, 8 (10)
  • [38] A novel deep learning motivated data augmentation system based on defect segmentation requirements
    Shuanlong Niu
    Yaru Peng
    Bin Li
    Yuanhong Qiu
    Tongzhi Niu
    Weifeng Li
    Journal of Intelligent Manufacturing, 2024, 35 : 687 - 701
  • [39] Copula-Based Data Augmentation on a Deep Learning Architecture for Cardiac Sensor Fusion
    Silva, Diogo
    Leonhardt, Steffen
    Antink, Christoph Hoog
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (07) : 2521 - 2532
  • [40] Temporal and spatial satellite data augmentation for deep learning-based rainfall nowcasting
    Yesilkoy, Ozlem Baydaroglu
    Demir, Ibrahim
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (03) : 589 - 607