Photocatalytic Optical Hollow Fiber with Enhanced Visible-light-driven CO2 Reduction

被引:4
作者
Chen, Jie [1 ]
Liu, Yang [1 ]
Xie, Quanhua [1 ]
He, Yuanyuan [1 ]
Zhong, Dengjie [2 ]
Chang, Haixing [2 ]
Ho, Shih-Hsin [3 ]
Zhong, Nianbing [1 ]
机构
[1] Chongqing Univ Technol, Chongqing Municipal Engn Res Ctr Inst Higher Educ, Chongqing Key Lab Modern Photoelect Detect Technol, Chongqing Key Lab Fiber Opt Sensor & Photodetector, Chongqing 400054, Peoples R China
[2] Chongqing Univ Technol, Sch Chem & Chem Engn, Chongqing 400054, Peoples R China
[3] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; hollow optical fiber; S-type heterojunction; visible-light photocatalysis; PHOTOREDUCTION; REACTOR;
D O I
10.1002/smll.202310894
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A visible-light-driven CO2 reduction optical fiber is fabricated using graphene-like nitrogen-doped composites and hollow quartz optical fibers to achieve enhanced activity, selectivity, and light utilization for CO2 photoreduction. The composites are synthesized from a lead-based metal-organic framework (TMOF-10-NH2) and g-C3N4 nanosheet (CNNS) via electrostatic self-assembly. The TMOF-10-NH2/g-C3N4 (TMOF/CNNS) photocatalyst with an S-type heterojunction is coated on optical fiber. The TMOF/CNNS coating, which has a bandgap energy of 2.15 eV, has good photoinduced capability at the coating interfaces, high photogenerated electron-hole pair yield, and high charge transfer rate. The conduction band potential of the TMOF/CNNS coating is more negative than that for CO2 reduction. Moreover, TMOF facilitates the CO desorption on its surface, thereby improving the selectivity for CO production. High CO2 photoreduction and selectivity for CO production is demonstrated by the TMOF/CNNS-coated optical fiber with the cladding/core diameter of 2000/1000 mu m, 10 wt% TMOF in CNNS, coating thickness of 25 mu m, initial CO2 concentration of 90 vol%, and relative humidity of 88% RH under the excitation wavelength of 380-780 nm. Overall, the photocatalytic hollow optical fiber developed herein provides an effective and efficient approach for the enhancement of light utilization efficiency of photocatalysts and selective CO2 reduction.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Eosin Y-Functionalized Conjugated Organic Polymers for Visible-Light-Driven CO2 Reduction with H2O to CO with High Efficiency [J].
Yu, Xiaoxiao ;
Yang, Zhenzhen ;
Qiu, Bing ;
Guo, Shien ;
Yang, Peng ;
Yu, Bo ;
Zhang, Hongye ;
Zhao, Yanfei ;
Yang, Xinzheng ;
Han, Buxing ;
Liu, Zhimin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (02) :632-636
[42]   Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction [J].
Chen, Weiyi ;
Han, Bin ;
Xie, Yili ;
Liang, Shujie ;
Deng, Hong ;
Lin, Zhang .
CHEMICAL ENGINEERING JOURNAL, 2020, 391
[43]   Visible-light-driven CO2 reduction to CO boosted by hydrogenated sphalerite-type CoO atomic layers with exposed polar {111} surfaces and the photocatalytic mechanism [J].
Guo, Junyi ;
Sun, Zehao ;
Luo, Qi ;
Meng, Xiaohua ;
Fan, Xinyi ;
Zhou, Yali ;
Fan, Nana ;
He, Yexuan ;
Li, Xiaobo ;
Liu, Bin ;
Yang, Heqing .
CHEMICAL ENGINEERING JOURNAL, 2024, 480
[44]   Organic semiconductor nanoparticles for visible-light-driven CO2 conversion [J].
Ferree, Mariia ;
Kosco, Jan ;
Alshehri, Nisreen ;
Zhao, Lingyun ;
De Castro, Catherine S. P. ;
Petoukhoff, Christopher E. ;
McCulloch, Iain ;
Heeney, Martin ;
Laquai, Frederic .
SUSTAINABLE ENERGY & FUELS, 2024, 8 (11) :2423-2430
[45]   Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity [J].
Dong, Wen-Wen ;
Jia, Jing ;
Wang, Ye ;
An, Jun-Rong ;
Yang, Ou-Yang ;
Gao, Xue-Jing ;
Liu, Yun-Ling ;
Zhao, Jun ;
Li, Dong-Sheng .
CHEMICAL ENGINEERING JOURNAL, 2022, 438
[46]   Sequential Growth of Cs3Bi2I9/BiVO4 Direct Z-Scheme Heterojunction for Visible-Light-Driven Photocatalytic CO2 Reduction [J].
Jiang, Long ;
Du, Hanrui ;
Li, Le ;
Guan, Xiangjiu ;
Zhang, Yihao ;
Li, Liwei ;
Liu, Xiaoxu ;
Li, Lei ;
Tian, Yingcheng ;
Zhang, Li ;
Wang, Shuai ;
Chen, Jie ;
Shen, Shaohua .
TRANSACTIONS OF TIANJIN UNIVERSITY, 2023, 29 (06) :482-491
[47]   Green synthesis of plasmonic Ag nanoparticles anchored TiO2 nanorod arrays using cold plasma for visible-light-driven photocatalytic reduction of CO2 [J].
Cheng, Xudong ;
Dong, Peimei ;
Huang, Zhengfeng ;
Zhang, Yanzhao ;
Chen, Yi ;
Nie, Xiaoxiao ;
Zhang, Xiwen .
JOURNAL OF CO2 UTILIZATION, 2017, 20 :200-207
[48]   Iron-Complex-Based Supramolecular Framework Catalyst for Visible-Light-Driven CO2 Reduction [J].
Kosugi, Kento ;
Akatsuka, Chiharu ;
Iwami, Hikaru ;
Kondo, Mio ;
Masaoka, Shigeyuki .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (19) :10451-10457
[49]   Visible-Light-Driven Photocatalytic CO2 Reduction to CO/CH4 Using a Metal-Organic "Soft" Coordination Polymer Gel [J].
Verma, Parul ;
Rahimi, Faruk Ahamed ;
Samanta, Debabrata ;
Kundu, Arup ;
Dasgupta, Jyotishman ;
Maji, Tapas Kumar .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (16)
[50]   Design of inorganic-organic hybrid photocatalytic systems for enhanced CO2 reduction under visible light [J].
Zhang, Lu ;
Wang, Wei ;
Wang, Hui ;
Ma, Xin ;
Bian, Zhaoyong .
CHEMICAL ENGINEERING SCIENCE, 2019, 207 :1246-1255