Two weight inequality for Hankel form on weighted Bergman spaces induced by doubling weights

被引:1
作者
Duan, Yongjiang [1 ]
Rattya, Jouni [2 ]
Wang, Siyu [1 ,3 ]
Wu, Fanglei [2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Univ Eastern Finland, Dept Phys & Math, POB 111, FI-80101 Joensuu, Finland
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Bergman projection; Bergman space; Bilinear Hankel form; Doubling weight; Small Hankel operator; Weak factorization; BLOCH-TYPE SPACES; TOEPLITZ-OPERATORS; FACTORIZATION THEOREMS; 2-WEIGHT INEQUALITY; HILBERT TRANSFORM; CARLESON MEASURES; HARDY-SPACES; COMMUTATORS; BMO;
D O I
10.1016/j.aim.2023.109249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The boundedness of the small Hankel operator h(f)(nu) (g) = P-nu(fg), induced by an analytic symbol f and the Bergman projection P(nu )associated to nu, acting from the weighted Bergman space A(omega)(p) to A(nu)(q) is characterized on the full range 0 < p, q < infinity of parameters when omega and nu belong to the class D of radial weights admitting certain two-sided doubling conditions. Moreover, an asymptotic formula for the operator norm of h(f)(nu) is established in terms of a suitable norm of f((n)) depending upon the inducing weights and parameters. Certain results obtained are equivalent to the boundedness of bilinear Hankel forms, which are in turn used to establish the weak factorization A(eta)(q) = A(omega)(1)(p) circle dot A(nu)(2)(p), where 1 < q, p(1), p(2) < infinity such that q(-1) = p(1)(-1) + p(2)(-1) and eta(1/q) x omega(1)/p(1) nu(1)/p(2). Here tau(r) = integral(1 )(r)tau(t) dt/(1 - r) for all 0 <= r < 1.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:47
相关论文
共 55 条
  • [1] Hankel operators on Bergman spaces and similarity to contractions
    Aleman, A
    Constantin, O
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (35) : 1785 - 1801
  • [2] Bergman projection induced by radial weight
    Angel Pelaez, Jose
    Rattya, Jouni
    [J]. ADVANCES IN MATHEMATICS, 2021, 391
  • [3] Harmonic conjugates on Bergman spaces induced by doubling weights
    Angel Pelaez, Jose
    Rattya, Jouni
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (02)
  • [4] Atomic Decomposition and Carleson Measures for Weighted Mixed Norm Spaces
    Angel Pelaez, Jose
    Rattya, Jouni
    Sierra, Kian
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 715 - 747
  • [5] Two weight inequality for Bergman projection
    Angel Pelaez, Jose
    Rattya, Jouni
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (01): : 102 - 130
  • [6] Embedding theorems for Bergman spaces via harmonic analysis
    Angel Pelaez, Jose
    Rattya, Jouni
    [J]. MATHEMATISCHE ANNALEN, 2015, 362 (1-2) : 205 - 239
  • [7] Peláez JA, 2014, MEM AM MATH SOC, V227, P1
  • [8] Bekolle D., 1981, Stud. Math., V71, P305
  • [9] Bekolle D., 1978, C. R. Acad. Sci. Paris Ser. A-B, V286, P775
  • [10] Litte Hankel Operators Between Vector-Valued Bergman Spaces on the Unit Ball
    Bekolle, David
    Defo, Hugues Olivier
    Tchoundja, Edgar L.
    Wick, Brett D.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (03)