Gluing constructions for Lorentzian length spaces

被引:4
作者
Beran, Tobias [1 ]
Rott, Felix [1 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
基金
奥地利科学基金会;
关键词
53C23 (primary); 53C50; 53B30; 51F99; 51K10 (secondary);
D O I
10.1007/s00229-023-01469-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an analogue to the amalgamation of metric spaces into the setting of Lorentzian pre-length spaces. This provides a very general process of constructing new spaces out of old ones. Themain application in thiswork is an analogue of the gluing theorem of Reshetnyak for CAT(k) spaces, which roughly states that gluing is compatible with upper curvature bounds. Due to the absence of a notion of spacelike distance in Lorentzian pre-length spaces we can only formulate the theorem in terms of (strongly causal) spacetimes viewed as Lorentzian length spaces.
引用
收藏
页码:667 / 710
页数:44
相关论文
共 20 条
  • [1] Alexander S., 2019, ALEXANDROV GEOMETRY, DOI 10.1007/978-3-030-05312-3
  • [2] Alexander SB, 2008, COMMUN ANAL GEOM, V16, P251
  • [3] Alexander SB, 2021, Arxiv, DOI arXiv:1909.09575
  • [4] Beran T., 2020, THESIS U VIENNA
  • [5] Bridson M R, 1999, GRUNDL MATH WISSEN, V319
  • [6] A geometric approach to semi-dispersing billiards
    Burago, D
    Ferleger, S
    Kononenko, A
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 : 303 - 319
  • [7] Uniform estimates on the number of collisions in semi-dispersing billiards
    Burago, D
    Ferleger, S
    Kononenko, A
    [J]. ANNALS OF MATHEMATICS, 1998, 147 (03) : 695 - 708
  • [8] Burago Dmitri, 2001, GRADUATE STUDIES MAT, V33
  • [9] Burtscher A, 2024, Arxiv, DOI [arXiv:2108.02693, arXiv:2108.02693]
  • [10] Cavalletti F, 2023, Arxiv, DOI arXiv:2004.08934