On the spectral zeta function of second order semiregular non-commutative harmonic oscillators

被引:3
作者
Malagutti, Marcello [1 ]
机构
[1] Univ Bologna, Dept Math, Piazza Porta S Donato 5, I-40126 Bologna, Italy
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2023年 / 187卷
关键词
Spectral zeta functions; Riemann's zeta function; Harmonic oscillator; Non -commutative harmonic; oscillators; OPERATORS;
D O I
10.1016/j.bulsci.2023.103286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a meromorphic continuation of the spectral zeta function for second order semiregular NonCommutative Harmonic Oscillators (NCHO). By "semiregular systems" we mean systems with terms with degree of homogeneity scaling by 1 in their asymptotic expansion. As an application of our results, we first compute the meromorphic continuation of the Jaynes-Cummings (JC) model spectral zeta function. Then we compute the spectral zeta function of the JC generalization to a 3-level atom in a cavity. For both of them we show that it has only one pole in 1. (c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:29
相关论文
共 29 条
[2]  
BOUTETDEMONVEL L, 1974, COMMUN PUR APPL MATH, V27, P585
[3]   Analytical Solutions of Basic Models in Quantum Optics [J].
Braak, Daniel .
APPLICATIONS + PRACTICAL CONCEPTUALIZATION + MATHEMATICS = FRUITFUL INNOVATION, 2016, 11 :75-92
[4]  
Carleman T., 1934, SKAND MAT K
[5]   SPECTRUM OF POSITIVE ELLIPTIC OPERATORS AND PERIODIC BICHARACTERISTICS [J].
DUISTERMAAT, JJ ;
GUILLEMIN, VW .
INVENTIONES MATHEMATICAE, 1975, 29 (01) :39-79
[6]  
Guillemin V.W., 1994, Mathematics Past and Present Fourier Integral Operators
[7]  
Helffer B., 1981, SEM EQ DER PART POL, P1
[8]   Regularized traces and Taylor expansions for the heat semigroup [J].
Hitrik, M ;
Polterovich, I .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 :402-418
[9]  
Hitrik M., 2003, ADV DIFFERENTIAL EQU, P161
[10]   SPECTRAL FUNCTION OF AN ELLIPTIC OPERATOR [J].
HORMANDER, L .
ACTA MATHEMATICA UPPSALA, 1968, 121 (3-4) :193-+