Casimir preserving integrators for stochastic Lie-Poisson equations with Stratonovich noise are developed, extending Runge-Kutta Munthe-Kaas methods. The underlying Lie-Poisson structure is preserved along stochastic trajectories. A related stochastic differential equation on the Lie algebra is derived. The solution of this differential equation updates the evolution of the Lie-Poisson dynamics using the exponential map. The constructed numerical method conserves Casimir-invariants exactly, which is important for long time integration. This is illustrated numerically for the case of the stochastic heavy top and the stochastic sine-Euler equations.
机构:
Key Technol Domain PCC Proc Control & Cognit Repr, Thales Land & Air Syst, F-91470 Limours, FranceKey Technol Domain PCC Proc Control & Cognit Repr, Thales Land & Air Syst, F-91470 Limours, France
Barbaresco, Frederic
Gay-Balmaz, Francois
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Natl Rech Sci CNRS, Lab Meteorol Dynam LMD, Ecole Normale Super, F-75005 Paris, FranceKey Technol Domain PCC Proc Control & Cognit Repr, Thales Land & Air Syst, F-91470 Limours, France
机构:
Key Technol Domain PCC Proc Control & Cognit Repr, Thales Land & Air Syst, F-91470 Limours, FranceKey Technol Domain PCC Proc Control & Cognit Repr, Thales Land & Air Syst, F-91470 Limours, France
Barbaresco, Frederic
Gay-Balmaz, Francois
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Natl Rech Sci CNRS, Lab Meteorol Dynam LMD, Ecole Normale Super, F-75005 Paris, FranceKey Technol Domain PCC Proc Control & Cognit Repr, Thales Land & Air Syst, F-91470 Limours, France