Casimir preserving stochastic Lie-Poisson integrators

被引:1
作者
Luesink, Erwin [1 ]
Ephrati, Sagy [1 ]
Cifani, Paolo [1 ,2 ]
Geurts, Bernard [1 ,3 ]
机构
[1] Univ Twente, Fac EEMCS, Dept Appl Math, Multiscale Modelling & Simulat, POB 217, NL-7500 AE Enschede, Netherlands
[2] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[3] Eindhoven Univ Technol, Ctr Computat Energy Res, Dept Appl Phys, Multiscale Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
来源
ADVANCES IN CONTINUOUS AND DISCRETE MODELS | 2024年 / 2024卷 / 01期
关键词
Stochastic Lie-Poisson integration; Hamiltonian mechanics; Stochastic differential equations; Geometric integration; Structure preservation; Lie group; Lie algebra; Coadjoint orbits; NUMERICAL-INTEGRATION; COADJOINT ORBITS; MECHANICS; EQUATIONS; TOPOLOGY;
D O I
10.1186/s13662-023-03796-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Casimir preserving integrators for stochastic Lie-Poisson equations with Stratonovich noise are developed, extending Runge-Kutta Munthe-Kaas methods. The underlying Lie-Poisson structure is preserved along stochastic trajectories. A related stochastic differential equation on the Lie algebra is derived. The solution of this differential equation updates the evolution of the Lie-Poisson dynamics using the exponential map. The constructed numerical method conserves Casimir-invariants exactly, which is important for long time integration. This is illustrated numerically for the case of the stochastic heavy top and the stochastic sine-Euler equations.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Eigenvalue problem versus Casimir functions for Lie algebras
    Dobrogowska, Alina
    Szajewska, Marzena
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)
  • [42] Eigenvalue problem versus Casimir functions for Lie algebras
    Alina Dobrogowska
    Marzena Szajewska
    Analysis and Mathematical Physics, 2024, 14
  • [43] ON RIEMANN-POISSON LIE GROUPS
    Alioune, Brahim
    Boucetta, Mohamed
    Lessiad, Ahmed Sid'Ahmed
    ARCHIVUM MATHEMATICUM, 2020, 56 (04): : 225 - 247
  • [44] Structure-preserving integrators based on a new variational principle for constrained mechanical systems
    Kinon, Philipp L. L.
    Betsch, Peter
    Schneider, Simeon
    NONLINEAR DYNAMICS, 2023, 111 (15) : 14231 - 14261
  • [45] Variable step size commutator free Lie group integrators
    Charles Curry
    Brynjulf Owren
    Numerical Algorithms, 2019, 82 : 1359 - 1376
  • [46] Variational integrators for stochastic dissipative Hamiltonian systems
    Kraus, Michael
    Tyranowski, Tomasz M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) : 1318 - 1367
  • [47] Backward Error Analysis and the Substitution Law for Lie Group Integrators
    Lundervold, Alexander
    Munthe-Kaas, Hans
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2013, 13 (02) : 161 - 186
  • [48] A class of orthogonal integrators for stochastic differential equations
    Carbonell, F
    Jimenez, JC
    Biscay, RJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (02) : 350 - 361
  • [49] Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics
    Barbaresco, Frederic
    Gay-Balmaz, Francois
    ENTROPY, 2020, 22 (05)
  • [50] Efficient energy-preserving integrators for oscillatory Hamiltonian systems
    Wu, Xinyuan
    Wang, Bin
    Shi, Wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 : 587 - 605