Casimir preserving stochastic Lie-Poisson integrators

被引:1
|
作者
Luesink, Erwin [1 ]
Ephrati, Sagy [1 ]
Cifani, Paolo [1 ,2 ]
Geurts, Bernard [1 ,3 ]
机构
[1] Univ Twente, Fac EEMCS, Dept Appl Math, Multiscale Modelling & Simulat, POB 217, NL-7500 AE Enschede, Netherlands
[2] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[3] Eindhoven Univ Technol, Ctr Computat Energy Res, Dept Appl Phys, Multiscale Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
来源
ADVANCES IN CONTINUOUS AND DISCRETE MODELS | 2024年 / 2024卷 / 01期
关键词
Stochastic Lie-Poisson integration; Hamiltonian mechanics; Stochastic differential equations; Geometric integration; Structure preservation; Lie group; Lie algebra; Coadjoint orbits; NUMERICAL-INTEGRATION; COADJOINT ORBITS; MECHANICS; EQUATIONS; TOPOLOGY;
D O I
10.1186/s13662-023-03796-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Casimir preserving integrators for stochastic Lie-Poisson equations with Stratonovich noise are developed, extending Runge-Kutta Munthe-Kaas methods. The underlying Lie-Poisson structure is preserved along stochastic trajectories. A related stochastic differential equation on the Lie algebra is derived. The solution of this differential equation updates the evolution of the Lie-Poisson dynamics using the exponential map. The constructed numerical method conserves Casimir-invariants exactly, which is important for long time integration. This is illustrated numerically for the case of the stochastic heavy top and the stochastic sine-Euler equations.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Casimir preserving stochastic Lie–Poisson integrators
    Erwin Luesink
    Sagy Ephrati
    Paolo Cifani
    Bernard Geurts
    Advances in Continuous and Discrete Models, 2024
  • [2] SPLITTING INTEGRATORS FOR STOCHASTIC LIE-POISSON SYSTEMS
    Brehier, Charles-Edouard
    Cohen, David
    Jahnke, Tobias
    MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2167 - 2216
  • [3] Poisson integrators for Lie-Poisson structures on R3
    Song, Lina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
  • [4] Numerical integration of Lie-Poisson systems while preserving coadjoint orbits and energy
    Engo, K
    Faltinsen, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) : 128 - 145
  • [5] CLEBSCH CANONIZATION OF LIE-POISSON SYSTEMS
    Jayawardana, Buddhika
    Morrison, Philip
    Ohsawa, Tomoki
    JOURNAL OF GEOMETRIC MECHANICS, 2022, 14 (04): : 635 - 658
  • [6] Drift-preserving numerical integrators for stochastic Poisson systems
    Cohen, David
    Vilmart, Gilles
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (01) : 4 - 20
  • [7] On an isospectral Lie-Poisson system and its lie algebra
    Bloch, AM
    Iserles, A
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (01) : 121 - 144
  • [8] A Lie-Poisson bracket formulation of plasticity and the computations based on the Lie-group SO(n)
    Liu, Chein-Shan
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (13) : 2033 - 2049
  • [9] Lie-Poisson Neural Networks (LPNets): Data-based computing of Hamiltonian systems with symmetries
    Eldred, Christopher
    Gay-Balmaz, Francois
    Huraka, Sofiia
    Putkaradze, Vakhtang
    NEURAL NETWORKS, 2024, 173
  • [10] Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method
    Bizyaev, I. A.
    Kozlov, V. V.
    SBORNIK MATHEMATICS, 2015, 206 (12) : 1682 - 1706