Casimir preserving integrators for stochastic Lie-Poisson equations with Stratonovich noise are developed, extending Runge-Kutta Munthe-Kaas methods. The underlying Lie-Poisson structure is preserved along stochastic trajectories. A related stochastic differential equation on the Lie algebra is derived. The solution of this differential equation updates the evolution of the Lie-Poisson dynamics using the exponential map. The constructed numerical method conserves Casimir-invariants exactly, which is important for long time integration. This is illustrated numerically for the case of the stochastic heavy top and the stochastic sine-Euler equations.
机构:
Umea Univ, Dept Math & Math Stat, Umea, Sweden
Chalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
Univ Gothenburg, Gothenburg, SwedenUmea Univ, Dept Math & Math Stat, Umea, Sweden
机构:
Sandia Natl Labs, Comp Sci Res Inst, 1450 Innovat Pkwy SE, Albuquerque, NM 87123 USASandia Natl Labs, Comp Sci Res Inst, 1450 Innovat Pkwy SE, Albuquerque, NM 87123 USA
Eldred, Christopher
Gay-Balmaz, Francois
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Div Math Sci, Singapore 637371, SingaporeSandia Natl Labs, Comp Sci Res Inst, 1450 Innovat Pkwy SE, Albuquerque, NM 87123 USA
Gay-Balmaz, Francois
Huraka, Sofiia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, CanadaSandia Natl Labs, Comp Sci Res Inst, 1450 Innovat Pkwy SE, Albuquerque, NM 87123 USA