Multi-Agent Reinforcement Learning for Highway Platooning

被引:4
|
作者
Kolat, Mate [1 ]
Becsi, Tamas [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Control Transportat & Vehicle Syst, H-1111 Budapest, Hungary
关键词
deep learning; reinforcement learning; platooning; road traffic control; multi-agent systems; VEHICLE; GAME;
D O I
10.3390/electronics12244963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of autonomous vehicles has opened new horizons for transportation efficiency and safety. Platooning, a strategy where vehicles travel closely together in a synchronized manner, holds promise for reducing traffic congestion, lowering fuel consumption, and enhancing overall road safety. This article explores the application of Multi-Agent Reinforcement Learning (MARL) combined with Proximal Policy Optimization (PPO) to optimize autonomous vehicle platooning. We delve into the world of MARL, which empowers vehicles to communicate and collaborate, enabling real-time decision making in complex traffic scenarios. PPO, a cutting-edge reinforcement learning algorithm, ensures stable and efficient training for platooning agents. The synergy between MARL and PPO enables the development of intelligent platooning strategies that adapt dynamically to changing traffic conditions, minimize inter-vehicle gaps, and maximize road capacity. In addition to these insights, this article introduces a cooperative approach to Multi-Agent Reinforcement Learning (MARL), leveraging Proximal Policy Optimization (PPO) to further optimize autonomous vehicle platooning. This cooperative framework enhances the adaptability and efficiency of platooning strategies, marking a significant advancement in the pursuit of intelligent and responsive autonomous vehicle systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Highway On-Ramp Truck Platooning Based on Deep Reinforcement Learning
    Wang, An
    Qi, Liang
    Luan, Wenjing
    Lu, Tong
    TRANSPORTATION RESEARCH RECORD, 2024,
  • [32] Multi-Agent Reinforcement Learning with Multi-Step Generative Models
    Krupnik, Orr
    Mordatch, Igor
    Tamar, Aviv
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [33] Switching-aware multi-agent deep reinforcement learning for target interception
    Fan, Dongyu
    Shen, Haikuo
    Dong, Lijing
    APPLIED INTELLIGENCE, 2023, 53 (07) : 7876 - 7891
  • [34] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [35] Multi-agent reinforcement learning: weighting and partitioning
    Sun, R
    Peterson, T
    NEURAL NETWORKS, 1999, 12 (4-5) : 727 - 753
  • [36] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [37] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [38] Automatic partitioning for multi-agent reinforcement learning
    Sun, R
    Peterson, T
    ICONIP'98: THE FIFTH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING JOINTLY WITH JNNS'98: THE 1998 ANNUAL CONFERENCE OF THE JAPANESE NEURAL NETWORK SOCIETY - PROCEEDINGS, VOLS 1-3, 1998, : 268 - 271
  • [39] Distributed reinforcement learning in multi-agent networks
    Kar, Soummya
    Moura, Jose M. F.
    Poor, H. Vincent
    2013 IEEE 5TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2013), 2013, : 296 - +
  • [40] Reinforcement Learning for Multi-Agent Competitive Scenarios
    Coutinho, Manuel
    Reis, Luis Paulo
    2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2022, : 130 - 135