Multi-Agent Reinforcement Learning for Highway Platooning

被引:4
|
作者
Kolat, Mate [1 ]
Becsi, Tamas [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Control Transportat & Vehicle Syst, H-1111 Budapest, Hungary
关键词
deep learning; reinforcement learning; platooning; road traffic control; multi-agent systems; VEHICLE; GAME;
D O I
10.3390/electronics12244963
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of autonomous vehicles has opened new horizons for transportation efficiency and safety. Platooning, a strategy where vehicles travel closely together in a synchronized manner, holds promise for reducing traffic congestion, lowering fuel consumption, and enhancing overall road safety. This article explores the application of Multi-Agent Reinforcement Learning (MARL) combined with Proximal Policy Optimization (PPO) to optimize autonomous vehicle platooning. We delve into the world of MARL, which empowers vehicles to communicate and collaborate, enabling real-time decision making in complex traffic scenarios. PPO, a cutting-edge reinforcement learning algorithm, ensures stable and efficient training for platooning agents. The synergy between MARL and PPO enables the development of intelligent platooning strategies that adapt dynamically to changing traffic conditions, minimize inter-vehicle gaps, and maximize road capacity. In addition to these insights, this article introduces a cooperative approach to Multi-Agent Reinforcement Learning (MARL), leveraging Proximal Policy Optimization (PPO) to further optimize autonomous vehicle platooning. This cooperative framework enhances the adaptability and efficiency of platooning strategies, marking a significant advancement in the pursuit of intelligent and responsive autonomous vehicle systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multi-Agent Reinforcement Learning for Traffic Signal Control: A Cooperative Approach
    Kolat, Mate
    Kovari, Balint
    Becsi, Tamas
    Aradi, Szilard
    SUSTAINABILITY, 2023, 15 (04)
  • [2] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [3] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [4] Multi-agent reinforcement learning: A survey
    Busoniu, Lucian
    Babuska, Robert
    De Schutter, Bart
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1133 - +
  • [5] Twin attentive deep reinforcement learning for multi-agent defensive convoy
    Fan, Dongyu
    Shen, Haikuo
    Dong, Lijing
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (06) : 2239 - 2250
  • [6] Generalized learning automata for multi-agent reinforcement learning
    De Hauwere, Yann-Michael
    Vrancx, Peter
    Nowe, Ann
    AI COMMUNICATIONS, 2010, 23 (04) : 311 - 324
  • [7] Predicting Driver Behavior on the Highway with Multi-Agent Adversarial Inverse Reinforcement Learning
    Radtke, Henrik
    Bey, Henrik
    Sackmann, Moritz
    Schoen, Torsten
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [8] A Multi-Agent Reinforcement Learning Approach for Stock Portfolio Allocation
    Koratamaddi, Prahlad
    Wadhwani, Karan
    Gupta, Mridul
    Sanjeevi, Sriram G.
    CODS-COMAD 2021: PROCEEDINGS OF THE 3RD ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE & MANAGEMENT OF DATA (8TH ACM IKDD CODS & 26TH COMAD), 2021, : 410 - 410
  • [9] PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems
    Biagioni, David
    Zhang, Xiangyu
    Wald, Dylan
    Vaidhynathan, Deepthi
    Chintala, Rohit
    King, Jennifer
    Zamzam, Ahmed S.
    PROCEEDINGS OF THE 2022 THE THIRTEENTH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, E-ENERGY 2022, 2022, : 565 - 570
  • [10] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,