Bounds on Orthonormal Polynomials for Restricted Measures

被引:0
作者
Lubinsky, D. S. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Orthogonal polynomials; Bounds; Restricted measures; ORTHOGONAL POLYNOMIALS; GROWTH; ZEROS;
D O I
10.1007/s00365-023-09671-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that. is a given positive measure on [-1, 1], and that mu is another measure on the real line, whose restriction to (-1, 1) is nu. We show that one can bound the orthonormal polynomials p(n) (mu, y) for mu and y is an element of R, by the supremum of | S-J ( y) p(n-J) (S-j(2)nu, y )|, where the sup is taken over all 0 <= J <= n and all monic polynomials S-J of degree J with zeros in an appropriate set.
引用
收藏
页码:615 / 645
页数:31
相关论文
共 31 条
[21]  
LEVIN E, 2018, SPRINGERBRIEF MATH
[22]   Bounds on orthogonal polynomials and separation of their zeros [J].
Levin, Eli ;
Lubinsky, Doron S. .
JOURNAL OF SPECTRAL THEORY, 2022, 12 (02) :497-513
[23]   On zeros, bounds, and asymptotics for orthogonal polynomials on the unit circle [J].
Lubinsky, D. S. .
SBORNIK MATHEMATICS, 2022, 213 (11) :1512-1529
[24]  
Lubinsky DS, 2021, DOLOMIT RES NOTES AP, V14, P42
[25]   BOUNDS FOR CERTAIN FREUD-TYPE ORTHOGONAL POLYNOMIALS [J].
MHASKAR, HN .
JOURNAL OF APPROXIMATION THEORY, 1990, 63 (02) :238-254
[26]  
Mhaskar HN., 1996, WEIGHTED POLYNOMIAL
[27]  
Rahmanov E.A., 1981, Math. USSR Sb, V156, P269
[28]  
Rahmanov E.A., 1979, MAT SB, V108, P581
[29]  
Rakhmanov E.A., 1986, MATH USSR SB, V118, P151, DOI DOI 10.1070/SM1987V058N01ABEH003097
[30]  
Simon B., 2005, AM MATH SOC C PUBL, V54