Bounds on Orthonormal Polynomials for Restricted Measures

被引:0
作者
Lubinsky, D. S. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Orthogonal polynomials; Bounds; Restricted measures; ORTHOGONAL POLYNOMIALS; GROWTH; ZEROS;
D O I
10.1007/s00365-023-09671-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that. is a given positive measure on [-1, 1], and that mu is another measure on the real line, whose restriction to (-1, 1) is nu. We show that one can bound the orthonormal polynomials p(n) (mu, y) for mu and y is an element of R, by the supremum of | S-J ( y) p(n-J) (S-j(2)nu, y )|, where the sup is taken over all 0 <= J <= n and all monic polynomials S-J of degree J with zeros in an appropriate set.
引用
收藏
页码:615 / 645
页数:31
相关论文
共 31 条
[1]   Continuity of Weighted Operators, Muckenhoupt Ap Weights, and Steklov Problem for Orthogonal Polynomials [J].
Alexis, Michel ;
Aptekarev, Alexander ;
Denisov, Sergey .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (08) :5935-5972
[2]   WKB approximation and Krall-type orthogonal polynomials [J].
Alvarez-Nodarse, R ;
Marcellan, F ;
Petronilho, J .
ACTA APPLICANDAE MATHEMATICAE, 1998, 54 (01) :27-58
[3]   ON THE POSSIBLE RATE OF GROWTH OF POLYNOMIALS ORTHOGONAL WITH A CONTINUOUS POSITIVE WEIGHT [J].
AMBROLADZE, MU .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 72 (02) :311-331
[4]  
Ambroladze MU., 1989, MAT ZAMETKI, V45, P99
[5]  
[Anonymous], 2001, Orthogonal Polynomials for Exponential Weights
[6]   ON A PROBLEM BY STEKLOV [J].
Aptekarev, A. ;
Denisov, S. ;
Tulyakov, D. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 29 (04) :1117-1165
[7]   V. A. Steklov's Problem of Estimating the Growth of Orthogonal Polynomials [J].
Aptekarev, A. I. ;
Denisov, S. A. ;
Tulyakov, D. N. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 (01) :72-95
[8]   On a modification of the jacobi linear functional:: Asymptotic properties and zeros of the corresponding orthogonal polynomials [J].
Arvesú, J ;
Marcellán, F ;
Alvarez-Nodarse, R .
ACTA APPLICANDAE MATHEMATICAE, 2002, 71 (02) :127-158
[9]  
Badkov V.M., 1979, MAT SBORNIK, V109, P46
[10]   ESTIMATES OF THE ORTHOGONAL POLYNOMIALS WITH WEIGHT EXP(-XM), M AN EVEN POSITIVE INTEGER [J].
BONAN, SS ;
CLARK, DS .
JOURNAL OF APPROXIMATION THEORY, 1986, 46 (04) :408-410