Multicue Contrastive Self-Supervised Learning for Change Detection in Remote Sensing

被引:4
|
作者
Yang, Meijuan [1 ,2 ]
Jiao, Licheng [2 ]
Liu, Fang [2 ]
Hou, Biao [2 ]
Yang, Shuyuan [2 ]
Zhang, Yake [2 ]
Wang, Jianlong [3 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
[2] Xidian Univ, Sch Artificial Intelligence, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
[3] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Change detection (CD); contrastive self-supervised learning (CSSL); dense features; feature matching; local self-similarity descriptor; remote sensing; UNSUPERVISED CHANGE DETECTION; AUTOMATIC CHANGE DETECTION; IMAGES;
D O I
10.1109/TGRS.2023.3330494
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Contrastive self-supervised learning (CSSL) is a promising method for extracting effective features from unlabeled data. It performs well in image-level tasks, such as image classification and retrieval. However, the existing CSSL methods are not suitable for pixel-level tasks, for example, change detection (CD), since they ignore the correlation between local patches or pixels. In this article, we first propose a multicue CSSL (MC-CSSL) method to derive dense features for CD. Besides data augmentation, the MC-CSSL takes advantage of more cues based on the semantic meaning and temporal correlation of local patches. Specifically, the positive pair is built from local patches with similar semantic meanings or temporal ones with the same geographic location. The assumption is that local patches belonging to the same kind of land-covering tend to share similar features. Second, the affinity matrix is truncated and introduced to extract change information between two temporal patches obtained from different types of sensors. As a result, some initial unchanged pixels are selected to serve as the supervision for mapping the dense features into a consistent space. Based on the distance between all bitemporal pixels in the consistent space, a difference image (DI) is generated and more unchanged pixels can be available. The dense feature mapping and unchanged pixel updating proceed alternately. The proposed CD method is evaluated in both homogeneous and heterogeneous cases, and the experimental results demonstrate its effectiveness and priority after comparison with some existing state-of-the-art methods. The source code will be available at https://github.com/Yang202308/ChangeDetection_CSSL.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [41] SAR Image Change Detection Based on Data Optimization and Self-Supervised Learning
    Meng, Wenhui
    Wang, Liejun
    Du, Anyu
    Li, Yongming
    IEEE ACCESS, 2020, 8 : 217290 - 217305
  • [42] COLOR-AWARE SELF-SUPERVISED LEARNING FOR SCENE CLASSIFICATION AND SEGMENTATION OF REMOTE SENSING IMAGES
    Xu, Guozheng
    Jiang, Xue
    Liu, Xingzhao
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5049 - 5052
  • [43] Learning Remote Sensing Aleatoric Uncertainty for Semi-Supervised Change Detection
    Shen, Jinhao
    Zhang, Cong
    Zhang, Mingwei
    Li, Qiang
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [44] Single-Temporal Supervised Learning for Universal Remote Sensing Change Detection
    Zheng, Zhuo
    Zhong, Yanfei
    Ma, Ailong
    Zhang, Liangpei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5582 - 5602
  • [45] Detection of Changes in Buildings in Remote Sensing Images via Self-Supervised Contrastive Pre-Training and Historical Geographic Information System Vector Maps
    Feng, Wenqing
    Guan, Fangli
    Tu, Jihui
    Sun, Chenhao
    Xu, Wei
    REMOTE SENSING, 2023, 15 (24)
  • [46] Contrastive Scene Change Representation Learning for High-Resolution Remote Sensing Scene Change Detection
    Wang, Jue
    Zhong, Yanfei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [47] Pixel-Level Self-Supervised Learning for Semi-Supervised Building Extraction From Remote Sensing Images
    Yu, Anzhu
    Liu, Bing
    Cao, Xuefeng
    Qiu, Chunping
    Guo, Wenyue
    Quan, Yujun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [48] AST: Adaptive Self-supervised Transformer for optical remote sensing representation
    He, Qibin
    Sun, Xian
    Yan, Zhiyuan
    Wang, Bing
    Zhu, Zicong
    Diao, Wenhui
    Yang, Michael Ying
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 200 : 41 - 54
  • [49] Self-Supervised Edge Perceptual Learning Framework for High-Resolution Remote Sensing Images Classification
    Li, Guangfei
    Liu, Wenbing
    Gao, Quanxue
    Wang, Qianqian
    Han, Jungong
    Gao, Xinbo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 6024 - 6038
  • [50] ENHANCED REMOTE SENSING MODEL PERFORMANCE THROUGH SELF-SUPERVISED LEARNING WITH MULTI-SPECTRAL DATA
    Hakizimana, Marlyne
    Mavis, Emelia
    Chiu, Yuting
    Malof, Jordan
    Bradbury, Kyle
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 2833 - 2836