Multicue Contrastive Self-Supervised Learning for Change Detection in Remote Sensing

被引:4
|
作者
Yang, Meijuan [1 ,2 ]
Jiao, Licheng [2 ]
Liu, Fang [2 ]
Hou, Biao [2 ]
Yang, Shuyuan [2 ]
Zhang, Yake [2 ]
Wang, Jianlong [3 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
[2] Xidian Univ, Sch Artificial Intelligence, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
[3] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Change detection (CD); contrastive self-supervised learning (CSSL); dense features; feature matching; local self-similarity descriptor; remote sensing; UNSUPERVISED CHANGE DETECTION; AUTOMATIC CHANGE DETECTION; IMAGES;
D O I
10.1109/TGRS.2023.3330494
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Contrastive self-supervised learning (CSSL) is a promising method for extracting effective features from unlabeled data. It performs well in image-level tasks, such as image classification and retrieval. However, the existing CSSL methods are not suitable for pixel-level tasks, for example, change detection (CD), since they ignore the correlation between local patches or pixels. In this article, we first propose a multicue CSSL (MC-CSSL) method to derive dense features for CD. Besides data augmentation, the MC-CSSL takes advantage of more cues based on the semantic meaning and temporal correlation of local patches. Specifically, the positive pair is built from local patches with similar semantic meanings or temporal ones with the same geographic location. The assumption is that local patches belonging to the same kind of land-covering tend to share similar features. Second, the affinity matrix is truncated and introduced to extract change information between two temporal patches obtained from different types of sensors. As a result, some initial unchanged pixels are selected to serve as the supervision for mapping the dense features into a consistent space. Based on the distance between all bitemporal pixels in the consistent space, a difference image (DI) is generated and more unchanged pixels can be available. The dense feature mapping and unchanged pixel updating proceed alternately. The proposed CD method is evaluated in both homogeneous and heterogeneous cases, and the experimental results demonstrate its effectiveness and priority after comparison with some existing state-of-the-art methods. The source code will be available at https://github.com/Yang202308/ChangeDetection_CSSL.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Contrastive Self-Supervised Learning With Smoothed Representation for Remote Sensing
    Jung, Heechul
    Oh, Yoonju
    Jeong, Seongho
    Lee, Chaehyeon
    Jeon, Taegyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Self-Supervised Change Detection in Multiview Remote Sensing Images
    Chen, Yuxing
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Self-Supervised Learning in Remote Sensing
    Wang, Yi
    Albrecht, Conrad M.
    Ait Ali Braham, Nassim
    Mou, Lichao
    Zhu, Xiao Xiang
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (04) : 213 - 247
  • [4] TASK-RELATED SELF-SUPERVISED LEARNING FOR REMOTE SENSING IMAGE CHANGE DETECTION
    Cai, Zhinan
    Jiang, Zhiyu
    Yuan, Yuan
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1535 - 1539
  • [5] Self-Supervised Representation Learning for Remote Sensing Image Change Detection Based on Temporal Prediction
    Dong, Huihui
    Ma, Wenping
    Wu, Yue
    Zhang, Jun
    Jiao, Licheng
    REMOTE SENSING, 2020, 12 (11)
  • [6] Self-supervised multimodal change detection based on difference contrast learning for remote sensing imagery
    Hou, Xuan
    Bai, Yunpeng
    Xie, Yefan
    Zhang, Yunfeng
    Fu, Lei
    Li, Ying
    Shang, Changjing
    Shen, Qiang
    PATTERN RECOGNITION, 2025, 159
  • [7] A Self-Supervised Learning Method for Shadow Detection in Remote Sensing Imagery
    Yin, Shoulin
    Liu, Jie
    Li, Hang
    3D RESEARCH, 2018, 9 (04)
  • [8] Global and Local Contrastive Self-Supervised Learning for Semantic Segmentation of HR Remote Sensing Images
    Li, Haifeng
    Li, Yi
    Zhang, Guo
    Liu, Ruoyun
    Huang, Haozhe
    Zhu, Qing
    Tao, Chao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] In-Domain Supervised and Contrastive Self-Supervised Representation Learning for Dense Prediction Problems in Remote Sensing Imageries
    Ghanbarzadeh, Ali
    Soleimani, Hossein
    IEEE ACCESS, 2024, 12 : 183510 - 183524
  • [10] Reliable Contrastive Learning for Semi-Supervised Change Detection in Remote Sensing Images
    Wang, Jia-Xin
    Li, Teng
    Chen, Si-Bao
    Tang, Jin
    Luo, Bin
    Wilson, Richard C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60