Anti-adversarial Consistency Regularization for Data Augmentation: Applications to Robust Medical Image Segmentation
被引:3
|
作者:
Cho, Hyuna
论文数: 0引用数: 0
h-index: 0
机构:
Pohang Univ Sci & Technol POSTECH, Pohang, South KoreaPohang Univ Sci & Technol POSTECH, Pohang, South Korea
Cho, Hyuna
[1
]
Han, Yubin
论文数: 0引用数: 0
h-index: 0
机构:
Pohang Univ Sci & Technol POSTECH, Pohang, South KoreaPohang Univ Sci & Technol POSTECH, Pohang, South Korea
Han, Yubin
[1
]
Kim, Won Hwa
论文数: 0引用数: 0
h-index: 0
机构:
Pohang Univ Sci & Technol POSTECH, Pohang, South KoreaPohang Univ Sci & Technol POSTECH, Pohang, South Korea
Kim, Won Hwa
[1
]
机构:
[1] Pohang Univ Sci & Technol POSTECH, Pohang, South Korea
来源:
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV
|
2023年
/
14223卷
关键词:
Adversarial attack and defense;
Data augmentation;
Semantic segmentation;
D O I:
10.1007/978-3-031-43901-8_53
中图分类号:
TP31 [计算机软件];
学科分类号:
081202 ;
0835 ;
摘要:
Modern deep learning methods for semantic segmentation require labor-intensive labeling for large-scale datasets with dense pixel-level annotations. Recent data augmentation methods such as dropping, mixing image patches, and adding random noises suggest effective ways to address the labeling issues for natural images. However, they can only be restrictively applied to medical image segmentation as they carry risks of distorting or ignoring the underlying clinical information of local regions of interest in an image. In this paper, we propose a novel data augmentation method for medical image segmentation without losing the semantics of the key objects (e.g., polyps). This is achieved by perturbing the objects with quasi-imperceptible adversarial noises and training a network to expand discriminative regions with a guide of anti-adversarial noises. Such guidance can be realized by a consistency regularization between the two contrasting data, and the strength of regularization is automatically and adaptively controlled considering their prediction uncertainty. Our proposed method significantly outperforms various existing methods with high sensitivity and Dice scores and extensive experiment results with multiple backbones on two datasets validate its effectiveness.
机构:
Fudan Univ, Digital Med Res Ctr, Sch Basic Med Sci, Shanghai, Peoples R China
Shanghai Key Lab MICCAI, Shanghai, Peoples R ChinaImperial Coll London, Dept Comp, London, England
机构:
Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China
Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Shanghai, Peoples R ChinaShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Wu, Xing
Li, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R ChinaShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Li, Zhi
Tao, Chenjie
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R ChinaShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Tao, Chenjie
Han, Xianhua
论文数: 0引用数: 0
h-index: 0
机构:
Rikkyo Univ, Grad Sch Artificial Intelligence & Sci, Tokyo, JapanShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Han, Xianhua
Chen, Yen-Wei
论文数: 0引用数: 0
h-index: 0
机构:
Ritsumeikan Univ, Coll Informat Sci & Engn, Kusatsu, JapanShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Chen, Yen-Wei
Yao, Junfeng
论文数: 0引用数: 0
h-index: 0
机构:
CSSC SEAGO SYST TECHNOL CO LTD, Shanghai, Peoples R ChinaShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Yao, Junfeng
Zhang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Med Coll, Shanghai, Peoples R China
Shanghai Universal Med Imaging Diagnost Ctr, Shanghai, Peoples R ChinaShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Zhang, Jian
Sun, Qun
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Shanghai Peoples Hosp Affiliated 6, Shanghai, Peoples R ChinaShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Sun, Qun
Li, Weimin
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R ChinaShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Li, Weimin
Liu, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R ChinaShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
Liu, Yue
Guo, Yike
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Hong Kong, Peoples R ChinaShanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
机构:
Fraunhofer Portugal AICOS, Rua Alfredo Allen, P-4200135 Porto, PortugalFraunhofer Portugal AICOS, Rua Alfredo Allen, P-4200135 Porto, Portugal
Andrade, Catarina
Teixeira, Luis F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Engn, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
INESC TEC, Rua Dr Roberto Frias, P-4200465 Porto, PortugalFraunhofer Portugal AICOS, Rua Alfredo Allen, P-4200135 Porto, Portugal
Teixeira, Luis F.
Vasconcelos, Maria Joao M.
论文数: 0引用数: 0
h-index: 0
机构:
Fraunhofer Portugal AICOS, Rua Alfredo Allen, P-4200135 Porto, PortugalFraunhofer Portugal AICOS, Rua Alfredo Allen, P-4200135 Porto, Portugal
Vasconcelos, Maria Joao M.
Rosado, Luis
论文数: 0引用数: 0
h-index: 0
机构:
Fraunhofer Portugal AICOS, Rua Alfredo Allen, P-4200135 Porto, PortugalFraunhofer Portugal AICOS, Rua Alfredo Allen, P-4200135 Porto, Portugal