Machine Learning-Based Real-Time Metasurface Reconfiguration

被引:0
|
作者
Su, Feng [1 ]
Luong, David [1 ]
Lam, Ian [1 ]
Rajan, Sreeraman [1 ]
Gupta, Shulabh [2 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Carleton Univ, Dept Elect, Ottawa, ON, Canada
来源
2023 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS | 2023年
关键词
Metasurface; Machine learning; Multi-output regression; Random forest; Neural network; Stacked generalization;
D O I
10.1109/SAS58821.2023.10254166
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Reconfiguration of a programmable coupled resonator metasurface is challenging. Due to its complexity, scalability to real-world applications using known techniques is not feasible. In this paper, we explore this challenge using a machine learning approach. We investigate two well-known machine learning regression models (random forest and neural network), as well as a combination of the two using stacked generalization, in order to predict the inputs required to generate a desired far-field radiation pattern of a metasurface. Preliminary results indicate that a random forest and a neural network in a stacked generalization ensemble outperforms separate implementations of those models.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Real-Time V2V Communication With a Machine Learning-Based System for Detecting Drowsiness of Drivers
    Awad, Ahmed Y.
    Mohan, Seshadri
    INTERNATIONAL JOURNAL OF INTERDISCIPLINARY TELECOMMUNICATIONS AND NETWORKING, 2021, 13 (04) : 35 - 50
  • [42] Unlocking Real-Time Decision-Making in Warehouses: A machine learning-based forecasting and alerting system for cycle time prediction
    Aloini, Davide
    Benevento, Elisabetta
    Dulmin, Riccardo
    Guerrazzi, Emanuele
    Mininno, Valeria
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2025, 194
  • [43] Machine learning-based real-time velocity prediction of projectile penetration to carbon/aramid hybrid fiber laminates
    Wang, Yu
    Sun, Weifu
    THIN-WALLED STRUCTURES, 2024, 197
  • [44] Machine learning-based real time identification of driver posture during driving
    Cetin, Ahmet Emre
    Akdogan, Erhan
    Battal, Suden
    Ibolar, Ceyhun
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024,
  • [45] A Compositional Approach for Real-Time Machine Learning
    Allen, Nathan
    Raje, Yash
    Ro, Jin Woo
    Roop, Partha
    17TH ACM-IEEE INTERNATIONAL CONFERENCE ON FORMAL METHODS AND MODELS FOR SYSTEM DESIGN (MEMOCODE), 2019,
  • [46] MACHINE LEARNING ON CONGESTION ANALYSIS BASED REAL-TIME NAVIGATION SYSTEM
    Chen, Kai
    Makki, Kia
    Pissinou, Niki
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2011, 20 (04) : 753 - 781
  • [47] Real-time detection system for smartphone zombie based on machine learning
    Wada, Tomotaka
    Shikishima, Akito
    IEICE COMMUNICATIONS EXPRESS, 2020, 9 (07): : 268 - 273
  • [48] A machine learning nowcasting method based on real-time reanalysis data
    Han, Lei
    Sun, Juanzhen
    Zhang, Wei
    Xiu, Yuanyuan
    Feng, Hailei
    Lin, Yinjing
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (07) : 4038 - 4051
  • [49] Real-time monitoring of GPS flex power based on machine learning
    Xin Yang
    Wenxiang Liu
    Jinquan Huang
    Wei Xiao
    Feixue Wang
    GPS Solutions, 2022, 26
  • [50] Machine Learning Based Real-Time Activity Detection System Design
    Eren, Kazim Kivanc
    Kucuk, Kerem
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 462 - 467